# 数学代写|拓扑学代写Topology代考|MATH6204

#### Doug I. Jones

Lorem ipsum dolor sit amet, cons the all tetur adiscing elit

couryes-lab™ 为您的留学生涯保驾护航 在代写拓扑学Topology方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写拓扑学Topology代写方面经验极为丰富，各种代写拓扑学Topology相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础
couryes™为您提供可以保分的包课服务

## 数学代写|拓扑学代写Topology代考|Chern numbers

Consider a compact two-dimensional manifold $M$ and a map to the two-sphere, $\phi: M \rightarrow S^{2}$. In other words, for $\boldsymbol{r} \in M, \phi(\boldsymbol{r})=\left(\phi_{x}(\boldsymbol{r}), \phi_{y}(\boldsymbol{r})\right)$, with $\phi_{x}^{2}+\phi_{y}^{2}=1$, where $\boldsymbol{r}=(x, y)$ in some coordinate system on $M$. Something that looks suspiciously like a curvature tensor can be defined, $F_{i j}=\partial_{i} \phi_{j}-\partial_{j} \phi_{i}$, and from this curvature we may construct a topological invariant:
$$c_{1}=\frac{1}{2 \pi} \int_{M} d x d y F_{x y} .$$
This is the first Chern number, and it takes values in the integers. Notice that equation (5.14) looks very reminiscent of the expression for the Euler characteristic as an integral over Gaussian curvature (the Gauss-Bonnet theorem); the Chern number is in fact one of many generalizations of the Euler characteristic.

Even for non-compact spaces, the integral defining the Chern number may converge if the curvature vanishes at large distances. It is often convenient to replace non-compact two-dimensional surfaces by equivalent compact surfaces. For example, the plane $M=\mathbb{R}^{2}$ can be compactified into a two-sphere by, collapsing the circle at infinity to a point, effectively sewing together the ‘edges’ at infinity. Topologically, this means identifying $M$ with a two-sphere, $M \sim S^{2}$, so that the mapping $\phi$ takes spheres to spheres, $\phi: S^{2} \rightarrow S^{2}$. In the notation of chapter 3, the compactification can be written $S^{2} \sim M / \partial M . c_{1}$ essentially counts the number of times the first sphere wraps around the second, and its integer values will characterize the second homotopy class, $\pi_{2}\left(S^{2}\right)$.

In physical applications, $\phi(\boldsymbol{r})$ will often represent a point on the Bloch or Poincaré sphere, $x, y$ will be momentum components, and the two dimensional manifold $M$ will be a torus $T^{2}$ representing a Brillouin zone. In this context, $c_{1}$ is often referred to as the TKNN invariant (after Thouless, Kohomoto, Nightingale, and den Nijs [1]); it turns out to be important in the quantum Hall effect, and it will make an appearance in chapter $10 .$

## 数学代写|拓扑学代写Topology代考|Pontrjagin index

The second and third homotopy classes of the two-spheres are both labeled by integers:
$$\pi_{2}\left(S^{2}\right)=\pi_{3}\left(S^{2}\right)=\mathbb{Z} .$$
These labels are known, respectively, as the Pontrjagin and Hopf indices, and are discussed, respectively, in this section and the next.

Consider a map $\boldsymbol{\phi}: I \times I \rightarrow S^{2}$. This could, for example, represent a scalar field with internal degrees of freedom forming a three-dimensional vector lying on the unit sphere in the internal space. Such internal variables could be the three ‘color’ degrees of freedom in the theory of strong nuclear interactions or the components of a polarization vector in optics. The condition that the field be a unit vector in the internal space is written as $\phi \cdot \phi=1$ or $\phi_{a} \phi^{a}=1$, where the dot product and the latin indices are in the internal target space of the mapping. Components in the original square $I \times I$ will be given Greek indices. Let $x^{\mu}$ with $\mu=1,2$ be coordinates on the unit square $I \times I$. We can compactify the square by collapsing all the points on the boundary to a single point, thereby identifying the square with the two-sphere. Therefore, $\boldsymbol{\phi}$ can be viewed as a map between spheres: $\boldsymbol{\phi}: S^{2} \rightarrow S^{2}$, thereby defining a homotopy class in $\pi_{2}\left(S^{2}\right)$.
Define a quantity
$$Q=\frac{1}{8 \pi} \int_{I \times I} \epsilon^{\mu \nu} \boldsymbol{\phi} \cdot\left(\partial_{\mu} \boldsymbol{\phi} \times \partial_{\nu} \boldsymbol{\phi}\right) d x^{1} d x^{2}=\frac{1}{4 \pi} \int_{I \times I} A,$$
where
$$A=\phi \cdot\left(\frac{\partial \phi}{\partial x^{1}} \times \frac{\partial \phi}{\partial x^{2}}\right) d x^{1} \wedge d x^{2}=\frac{1}{2} \epsilon_{u b \iota} \phi^{a} \partial_{\mu} \phi^{b} \partial_{\nu} \phi^{c} d^{\mu} \wedge d x^{\nu}$$

# 拓扑学代考

## 数学代写|拓扑学代写Topology代考|Chern numbers

$$c_{1}=\frac{1}{2 \pi} \int_{M} d x d y F_{x y} .$$

## 数学代写|拓扑学代写Topology代考|Pontrjagin index

$$\pi_{2}\left(S^{2}\right)=\pi_{3}\left(S^{2}\right)=\mathbb{Z} .$$

$$Q=\frac{1}{8 \pi} \int_{I \times I} \epsilon^{\mu \nu} \phi \cdot\left(\partial_{\mu} \phi \times \partial_{\nu} \phi\right) d x^{1} d x^{2}=\frac{1}{4 \pi} \int_{I \times I} A$$

$$A=\phi \cdot\left(\frac{\partial \phi}{\partial x^{1}} \times \frac{\partial \phi}{\partial x^{2}}\right) d x^{1} \wedge d x^{2}=\frac{1}{2} \epsilon_{u b l} \phi^{a} \partial_{\mu} \phi^{b} \partial_{\nu} \phi^{c} d^{\mu} \wedge d x^{\nu}$$

## 有限元方法代写

tatistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

Days
Hours
Minutes
Seconds

# 15% OFF

## On All Tickets

Don’t hesitate and buy tickets today – All tickets are at a special price until 15.08.2021. Hope to see you there :)