经济代写|微观经济学代写Microeconomics代考|ECON106

Doug I. Jones

Doug I. Jones

Lorem ipsum dolor sit amet, cons the all tetur adiscing elit

如果你也在 怎样代写微观经济学Microeconomics这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

微观经济学是研究稀缺性及其对资源的使用、商品和服务的生产、生产和福利的长期增长的影响,以及对社会至关重要的其他大量复杂问题的研究。

couryes-lab™ 为您的留学生涯保驾护航 在代写微观经济学Microeconomics方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写微观经济学Microeconomics代写方面经验极为丰富,各种代写微观经济学Microeconomics相关的作业也就用不着说。

我们提供的微观经济学Microeconomics及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
经济代写|微观经济学代写Microeconomics代考|ECON106

经济代写|微观经济学代写Microeconomics代考|MARKET EQUILIBRIUM

The concept of equilibrium is employed in both the physical and social sciences, and it is of central importance in economic analysis. In general, a system is in equilibrium when all forces at work within the system are canceled by others, resulting in a balanced or unchanging situation. In physics, for example, a ball hanging from a spring is said to be in equilibrium when the spring has stretched sufficiently that the upward force it exerts on the ball is exactly counterbalanced by the downward force of gravity. In economics, a market is said to be in equilibrium when no participant in the market has any reason to alter his or her behavior, so that there is no tendency for production or prices in that market to change.

If we want to determine the final position of a ball hanging from a spring, we need to find the point at which the forces of gravity and spring tension are balanced and the system is in equilibrium. Similarly, if we want to find the price at which a good will sell (which we will call the equilibrium price) and the quantity of it that will be sold (the equilibrium quantity), we need to find the equilibrium in the market for that good. The basic tools for finding the equilibrium in a market for a good are the supply and demand curves for that good. For reasons we will explain, the equilibrium price and equilibrium quantity of a good are the price and quantity at which the supply and demand curves for the good intersect. For the hypothetical supply and demand curves shown earlier for the pizza market in Chicago, the equilibrium price will therefore be $\$ 3$ per slice, and the equilibrium quantity of pizza sold will be 12,000 slices per day, as shown in Figure 2.3.

Note that at the equilibrium price of $\$ 3$ per slice, both sellers and buyers are “satisfied” in the following sense: buyers are buying exactly the quantity of pizza they wish to buy at that price (12,000 slices per day) and sellers are selling exactly the quantity of pizza they wish to sell (also 12,000 slices per day). And since they are satisfied in this sense, neither buyers nor sellers face any incentives to change their behavior.

Note the limited sense of the term satisfied in the definition of market equilibrium. It doesn’t mean that sellers would be displeased to receive a price higher than the equilibrium price. Rather, it means only that they’re able to sell all they wish to sell at that price. Similarly, to say that buyers are satisfied at the equilibrium price doesn’t mean that they wouldn’t be happy to pay less than that price. Rather, it means only that they’re able to buy exactly as many units of the good as they wish to at the equilibrium price.

Note also that if the price of pizza in our Chicago market were anything other than $\$ 3$ per slice, either buyers or sellers would be frustrated. Suppose, for example, that the price of pizza were $\$ 4$ per slice, as shown in Figure 2.4. At that price, buyers wish to buy only 8,000 slices per day, but sellers wish to sell 16,000 . And since no one can force someone to buy a slice of pizza against her wishes, this means that buyers will buy only the 8,000 slices they wish to buy. So when price exceeds the equilibrium price, it is sellers who end up being frustrated. At a price of $\$ 4$ in this example, they are left with an excess supply, or surplus, of 8,000 slices per day.

经济代写|微观经济学代写Microeconomics代考|Rent Controls Reconsidered

Consider again the market for rental housing units in New York City and suppose ure 2.7. This market, left alone, would reach an equilibrium monthly rent of $\$ 1,600$, at which 2 million one-bedroom apartments would be rented. Both landlords and tenants would be satisfied, in the sense that they would not wish to rent either more or fewer units at that price.

This wouldn’t necessarily mean, of course, that all is well and good. Many potential tenants, for example, might simply be unable to afford a rent of $\$ 1,600$ per month and thus be forced to remain homeless (or to move out of the city to a cheaper location). Suppose that, acting purely out of benign motives, legislators made it unlawful for landlords to charge more than $\$ 800$ per month for one-bedroom apartments. Their stated aim in enacting this law was that no person should have to remain homeless because decent housing was unaffordable.

But note in Figure $2.8$ that when rents for one-bedroom apartments are prevented from rising above $\$ 800$ per month, landlords are willing to supply only $1 \mathrm{mil-}$ lion apartments per month, 1 million fewer than at the equilibrium monthly rent of $\$ 1,600$. Note also that at the controlled rent of $\$ 800$ per month, tenants want to rent 3 million one-bedroom apartments per month. (For example, many people who would have decided to live in New Jersey rather than pay $\$ 1,600$ a month in New York will now choose to live in the city.) So when rents are prevented from rising above $\$ 800$ per month, we see an excess demand for one-bedroom apartments of 2 million units each month. Put another way, the rent controls result in a housing shortage of 2 million units each month. What is more, the number of apartments actually available declines by 1 million units per month.

If the housing market were completely unregulated, the immediate response to such a high level of excess demand would be for rents to rise sharply. But here the law prevents them from rising above $\$ 800$. Many other ways exist, however, in which market participants can respond to the pressures of excess demand. For instance, owners will quickly learn that they are free to spend less on maintaining their rental units. After all, if there are scores of renters knocking at the door of each vacant apartment, a landlord has considerable room to maneuver. Leaking pipes, peeling paint, broken furnaces, and other problems are less likely to receive prompt attention-or, indeed, any attention at all-when rents are set well below market-clearing levels.
Nor are reduced availability of apartments and poorer maintenance of existing apartments the only difficulties. With an offering of only 1 million apartments per month, we see in Figure $2.8$ that there are renters who’d be willing to pay as much as $\$ 2,400$ per month for an apartment. This pressure will almost always find ways, legal or illegal, of expressing itself. In New York City, for example, it is not uncommon to see “finder’s fees” or “key deposits” as high as several thousand dollars. Owners who cannot charge a market-clearing rent for their apartments also have the option of converting them to condominiums or co-ops, which enables them to sell their assets for prices much closer to their true economic value.

经济代写|微观经济学代写Microeconomics代考|ECON106

微观经济学代考

经济代写|微观经济学代写微观经济学代考|市场均衡


平衡的概念在物理科学和社会科学中都有应用,它在经济分析中具有核心重要性。一般来说,当系统内所有作用的力都被其他力抵消时,系统就处于平衡状态,从而产生平衡或不变的情况。例如,在物理学中,一个挂在弹簧上的球被称为处于平衡状态,当弹簧被拉伸到足够的程度,它施加在球上的向上的力恰好被向下的重力抵消。在经济学中,当市场中的任何参与者都没有理由改变自己的行为,从而使市场的生产或价格没有变化的趋势时,市场就被称为处于均衡状态


如果我们想确定挂在弹簧上的球的最终位置,我们需要找到重力和弹簧张力平衡的点,系统处于平衡状态。同样,如果我们想找出一种商品的销售价格(我们称之为均衡价格)和它的销售数量(均衡量),我们需要找到该商品在市场上的均衡。寻找一种商品的市场均衡的基本工具是该商品的供需曲线。由于我们将解释的原因,一种商品的均衡价格和均衡量是该商品的供给和需求曲线相交时的价格和数量。对于前面所示的芝加哥披萨市场的假设供需曲线,因此均衡价格为每片$\$ 3$,每天出售的披萨均衡数量为12000片,如图2.3所示。


注意,当均衡价格为每片$\$ 3$时,卖方和买方都在以下意义上“满意”:买方以该价格购买了他们希望购买的数量的披萨(每天12000片),而卖方出售了他们希望出售的数量的披萨(也是每天12000片)。由于买方和卖方在这种意义上都是满意的,所以他们都没有任何改变自己行为的动机


请注意在市场均衡的定义中“满足”一词的有限意义。这并不意味着卖方会不高兴收到高于均衡价格的价格。更确切地说,这只意味着他们能够以这个价格卖出所有他们想卖的东西。同样,买家对均衡价格感到满意并不意味着他们不愿意支付低于均衡价格的价格。更确切地说,它只意味着他们能够以均衡价格确切地购买他们想要的商品的数量


还要注意的是,如果我们芝加哥市场的披萨价格不是每片$\$ 3$,买方或卖方都会感到沮丧。例如,假设每片披萨的价格是$\$ 4$,如图2.4所示。在这个价格下,买家希望每天只买8000片,但卖家希望每天卖16000片。因为没有人可以强迫一个人违背自己的意愿去买一片披萨,这意味着买家只会买他们想买的8000片披萨。所以当价格超过均衡价格时,最终受挫的是卖家。在这个例子中,如果价格为$\$ 4$,他们每天就会剩下8000片的过剩供应或盈余

经济代写|微观经济学代写微观经济学代考|重新考虑租金控制

.


再考虑一下纽约市的租赁住房单元市场,假设是2.7。如果不考虑这个市场,月租金将达到$\$ 1,600$的均衡水平,在这个水平上,将有200万套一居室公寓被出租。房东和租客都将感到满意,因为他们不会希望以这个价格租更多或更少的单位


当然,这并不一定意味着一切都很好。例如,许多潜在的租客可能只是无法支付每月$\$ 1,600$的租金,因此被迫无家可归(或搬出城市,搬到一个更便宜的地方)。假设,纯粹出于善意的动机,立法者将房东对一居室公寓每月收取超过$\$ 800$的费用定为非法。他们宣布颁布这项法律的目的是,任何人都不应该因为买不起体面的住房而不得不无家可归


但是请注意,在图$2.8$中,当一居室公寓的租金不能超过每月$\$ 800$时,房东每月只愿意提供$1 \mathrm{mil-}$ lion公寓,比均衡月租金$\$ 1,600$少100万套。还要注意的是,按每月$\$ 800$的控制租金计算,租户希望每月租300万套一居室公寓。(例如,许多人原本会决定住在新泽西,而不是在纽约付$\$ 1,600$一个月的房租,现在他们会选择住在纽约。)因此,如果租金不超过每月$\$ 800$,我们就会看到每月200万套一居室公寓的过剩需求。换句话说,房租管制导致每月住房短缺200万套。更糟糕的是,实际可出租的公寓数量每月减少100万套


如果住房市场完全不受监管,那么对如此高水平的过度需求的直接反应将是租金大幅上涨。但在这里,法律禁止他们超过$\$ 800$。然而,市场参与者还可以通过许多其他方式应对需求过剩的压力。例如,业主们很快就会意识到,他们可以在维护出租公寓上花更少的钱。毕竟,如果有几十个租客敲每一间空公寓的门,房东就有相当大的回旋余地。当租金远远低于市场出清水平时,漏水的管道、剥落的油漆、破碎的熔炉和其他问题不太可能得到及时的关注,甚至根本不太可能得到关注。公寓供应减少和现有公寓维护较差也不是唯一的困难。在每月仅提供100万套公寓的情况下,我们在图$2.8$中看到,有些租客愿意为一套公寓支付每月$\$ 2,400$的价格。这种压力几乎总会找到表达自己的方式,无论合法与否。例如,在纽约市,“发现者费”或“钥匙押金”高达几千美元的情况并不少见。如果业主无法为其公寓收取市场出清租金,他们也可以选择将其改建为共管公寓或合作公寓,这样他们就可以以更接近其真实经济价值的价格出售资产

经济代写|微观经济学代写Microeconomics代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

Days
Hours
Minutes
Seconds

hurry up

15% OFF

On All Tickets

Don’t hesitate and buy tickets today – All tickets are at a special price until 15.08.2021. Hope to see you there :)