# 金融代写|期权理论代写Mathematical Introduction to Options代考|MATH424

#### Doug I. Jones

Lorem ipsum dolor sit amet, cons the all tetur adiscing elit

couryes-lab™ 为您的留学生涯保驾护航 在代写期权理论Mathematical Introduction to Options方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写期权理论Mathematical Introduction to Options代写方面经验极为丰富，各种代写期权理论Mathematical Introduction to Options相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础
couryes™为您提供可以保分的包课服务

## 金融代写|期权理论代写Mathematical Introduction to Options代考|DYNAMIC HEDGING

In the first section of this chapter we considered a simple one-step model with two possible outcomes. Then in the following section we turned our attention to a more general, continuous model, but we still only considered a single short step $\delta S_t$ over a period $\delta t$. These models not only gave insights into a general approach for solving previously intractable problems (risk neutrality); they also yielded the fundamental differential equation governing all options. We now extend the analysis from one to two steps and in the process we derive the central result which underlies the whole of the modern options industry.
(i) Beginning of First Step: We buy an option and hedge it with delta units of the underlying stock. We start with zero wealth so any cash surplus or deficit is borrowed or deposited with a bank. We have already seen from equation (4.11) that our position may be represented by
$$f_{S_t t}-\Delta_{S_t t} S_t+B_{S_t t}=0$$
Consider two concrete examples

• A call option valued at 10 when the stock price is 100 which has a delta of 0.5. The delta of the call is positive so the hedge is to short stock. Putting numbers into the last equation gives
$$10-0.5 \times 100+B_{S_t t}=0 \quad \text { or } \quad B_{S_t t}=+40$$
Shorting the stock means borrowing stock and selling it. This process generates 50 of cash but the option cost us 10 ; the net of the two is a cash surplus of 40 which we place on deposit.
• A put option worth 10 when the stock price is 100; delta is -0.5. The delta of a put is negative, so the hedge is to buy stock. Our equation now becomes
$$10+0.5 \times 100+B_{S_t t}=0 \quad \text { or } \quad B_{S_t t}=-60$$
This time we buy the option for 10 but also need to spend 50 on the stock hedge. Our total outlay is 60 which needs to be borrowed.

## 金融代写|期权理论代写Mathematical Introduction to Options代考|EXAMPLES OF DYNAMIC HEDGING

(i) The theory developed in the last section called for rebalancing of the hedge at infinitesimally small time intervals, but this is obviously not possible in practice. The example we consider is a 1-year call option for which we rebalance the hedge once a month; in real life, we would rebalance the hedge more often. The columns of Table $4.1$ are as follows.
(A) $S_t$ : Assuming the stock price starts at 100 , we have generated a scenario of stock prices after 1 month, 2 months, …, 12 months. These values are calculated from equation (3.7), making the risk-neutral substitution $m=(r-q)-\frac{1}{2} \sigma^2$. In this particular example, we have taken $r=6 \%, q=3 \%, \sigma=25 \%$ so that
$$S_{\text {month } i+1}=S_{\text {month } i} \exp \left{3 \% \times \frac{1}{12}-\frac{1}{2} \times(25 \%)^2+25 \% \times \sqrt{\frac{1}{12} z_{i+1}}\right}$$
where $z_{i+1}$ is a random variable drawn from a standard normal population. Such variables are easy to generate in a spreadsheet using formulas discussed in Chapter 10. An infinite number of paths can be generated in this column simply by pressing the button which allocates the new set of random numbers for Tables $4.1$ and $4.2$. We have simply chosen a couple of paths which are good illustrations of the present subject.
(B) $\Delta_{S_t t}$ : The deltas shown in the third column are calculated from the Black Scholes model and correspond to the stock prices of column 2 and the time left to maturity.

The last three columns correspond to the portfolio $f_{S_t t}-\Delta_{S_t t} S_t+B_{S_t t}=0$, which as we have seen should have value zero at every point in time. The first line of this part of the table is constructed as follows.
(C) $f_{S_0 0}:$ On day 1, when the stock price is $100.00$, we buy an option for its fair value of $11.01$. This fair value is obtained from the Black Scholes model.
(D) $\Delta_{S_0 0} \times S_0$ : We have already calculated the delta, and this is the number of shares that is shorted to hedge the option. The cash we receive as a result of this short is shown in this column.
(E) $B_{S_0 0}$ : The amount of cash available for depositing in the cash account is the difference of the last two items.
The remainder of the last three columns is filled in as follows.
(F) $\Delta_{S_t t} \times S_t$ : Each month, observe the new share price and calculate an appropriate delta (columns 2 and 3 ).
(G) The change in the cash account is the sum of three items:

• Interest on the cash surplus received for the previous month;
• Dividends on the stock borrowed in the previous month;
• Stock bought or sold to readjust the hedge.

# 期权理论代写

## 金融代写|期权理论代写期权数学介绍代考|DYNAMIC HEDGING

.

$$f_{S_t t}-\Delta_{S_t t} S_t+B_{S_t t}=0$$

• 当股价为100时，价值为10的看涨期权，其δ值为0.5。看涨期权的delta是正的，所以对冲是做空股票。把数字代入最后一个等式得到
$$10-0.5 \times 100+B_{S_t t}=0 \quad \text { or } \quad B_{S_t t}=+40$$
做空股票意味着借入股票并卖出。这个过程产生了50美元的现金，但期权花费了我们10美元;两者加起来的现金盈余是40，这是我们存入的。股价为100时价值10的看跌期权;等于-0.5。看跌期权的δ是负的，所以对冲是买股票。我们的等式现在变成了
$$10+0.5 \times 100+B_{S_t t}=0 \quad \text { or } \quad B_{S_t t}=-60$$
这一次我们以10的价格购买期权，但也需要花费50在股票对冲上。我们的总费用是60，需要借用。

## 金融代写|期权理论代写期权数学介绍代考|动态套期保值示例

.

(A) $S_t$:假设股价从100开始，我们生成了一个1个月，2个月，…，12个月后的股价情景。这些值由式(3.7)计算，使风险中性替代$m=(r-q)-\frac{1}{2} \sigma^2$。在这个特殊的例子中，我们取$r=6 \%, q=3 \%, \sigma=25 \%$，因此
$$S_{\text {month } i+1}=S_{\text {month } i} \exp \left{3 \% \times \frac{1}{12}-\frac{1}{2} \times(25 \%)^2+25 \% \times \sqrt{\frac{1}{12} z_{i+1}}\right}$$
，其中$z_{i+1}$是从标准正态总体中提取的随机变量。这些变量很容易在电子表格中使用第10章中讨论的公式生成。只需按下为表$4.1$和$4.2$分配新随机数的按钮，就可以在该列中生成无限多的路径。
(B) $\Delta_{S_t t}$:第三列所示的δ是根据Black Scholes模型计算出来的，对应于第2列的股票价格和剩余的到期时间

(C) $f_{S_0 0}:$第一天，当股票价格为$100.00$时，我们以其公允价值$11.01$购买期权。
(D) $\Delta_{S_0 0} \times S_0$:我们已经计算了delta，这是为对冲期权而做空的股票数量。
(E) $B_{S_0 0}$:可存入现金账户的现金金额是后两项的差额。
(F) $\Delta_{S_t t} \times S_t$:每个月，观察新股票的价格并计算一个适当的增量(列2和3)。
(G)现金账户的变化是三个项目的总和: 上月收到的现金盈余的利息;上月借入的股票的股息;买卖股票以调整套期

## 有限元方法代写

tatistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

Days
Hours
Minutes
Seconds

# 15% OFF

## On All Tickets

Don’t hesitate and buy tickets today – All tickets are at a special price until 15.08.2021. Hope to see you there :)