# 计算机代写|机器学习代写machine learning代考|COMP5318

#### Doug I. Jones

Lorem ipsum dolor sit amet, cons the all tetur adiscing elit

couryes-lab™ 为您的留学生涯保驾护航 在代写机器学习 machine learning方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写机器学习 machine learning代写方面经验极为丰富，各种代写机器学习 machine learning相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础
couryes™为您提供可以保分的包课服务

## 计算机代写|机器学习代写machine learning代考|Interpreting the Parameters of Linear Models

When analyzing the linear models developed so far, we have already talked about interpreting their parameters in terms of general trends, correlation, differences between groups, and so on.

While is tempting to casually interpret the meaning of various features, we must be careful and precise when doing so.

First, we should be precise about the interpretation of our slope and intercept terms. For example, when we modeled ratings as a function of review length (eq. (2.12)), we srased that nnder our model, rarings increased fractionally $\left(1.193 \times 10^{-4}\right)$ for every character of a review.

This interpretation makes sense given a model containing only a single features, but as soon as we incorporate multiple features we must be more careful. Consider, for example, the model from Equation (2.15), in which we included both the length and number of comments as predictors. We could no longer state that under this model, the rating increases (by $7.243 \times 10^{-5}$ ) for every character in the review. Precisely, we must interpret the parameters as follows: Our prediction of the rating increases by $7.243 \times 10^{-5}$ for every character in the review, assuming the other features remain unchanged. This definition is stated precisely in Figure 2.14.

Critically, features like review length and number of comments may be highly correlated (e.g., we may rarely see longer reviews without also seeing more comments). For example, when incorporating features based on polynomial functions (as in eq. (2.35)), or when dealing with one-hot encodings (as in eq. (2.39)), a feature cannot change without the other features changing.

Second, we should be clear when interpreting parameters that we are talking about predictions under a particular model rather than actual changes in the label $y_i$. These predictions can change as we include additional features; a feature that had previously been predictive may become less so in the presence of another (as we saw in Equation (2.15)). Likewise, we should be careful not to conclude that (e.g.) length is not related to the output variable, simply because another correlated feature has a stronger relationship.

## 计算机代写|机器学习代写machine learning代考|Fitting Models with Gradient Descent

So far, when solving regression problems, we looked for closed form solutions. That is, we set up a system of equations (eq. (2.3)) in $X, y$, and $\theta$, and attempted to solve them for $\theta$ (albeit approximately via the pseudoinverse).

As we begin to fit more complex models (including in Chapter 3), a closedform solution may no longer be available.

Gradient descent is an approach to search for the minimum value of a function, by iteratively finding better solutions based on an initial starting point. The process (depicted in Figure 2.15) operates as follows:
(i) Start with an initial guess for $\theta$.
(ii) Compute the derivative $\frac{\partial}{\partial \theta} f(\theta)$. Here $f(\theta)$ is the MSE (or whatever criterion we are optimizing) under our model $\theta$.
(iii) Update our estimate of $\theta:-\theta-\alpha \cdot f^{\prime}(\theta)$.
(iv) Repeat Steps (ii) and (iii) until convergence.
During each iteration, the process now follows the path of steepest descent, and will gradually arrive at a minimum of the function $f_\theta \cdot{ }^{13}$

The above is a simple description of the procedure that omits many details. In practice, we will largely rely on high-level libraries to implement gradientbased methods (sec. 3.4.4). Briefly, to implement such techniques ‘from scratch,’ some of the main issues include:

• Given the starting point in Figure 2.15, the algorithm would only achieve a local rather than a global optimum. To address this we could investigate ways to come up with a better initial ‘guess’ of $\theta$, or investigate variants of gradient descent that are less susceptible to local minima.
• The step size $\alpha$ (step (iii)) must be chosen carefully. If $\alpha$ is too small, the procedure will converge very slowly; if $\alpha$ is too large, the procedure may ‘overshoot’ the minimum value and obtain a worse solution during the next iteration. Again, other than carefully tuning this parameter, we could investigate optimization methods not dependent on choosing this rate (see e.g., quasi-Newton methods such as L-BFGS (Liu and Nocedal, 1989)).
• ‘Convergence’ as defined in Step (iv) is not well-defined. We might define convergence in terms of the change in $\theta\left(\right.$ or $\left.f_\theta(X)\right)$ during two successive iterations, or alternately we may terminate the algorithm once we stop making progress on held-out (validation) data (see sec. 3.4.2).

# 机器学习代考

## 计算机代写|机器学习代写machine learning代考|Fitting Models with Gradient Descent

(i) 从初始猜测开始一世.
(ii) 计算导数∂∂一世F(一世). 这里F(一世)是我们模型下的 MSE（或我们正在优化的任何标准）一世.
(iii) 更新我们的估计一世:−一世−一种⋅F′(一世).
(iv) 重复步骤 (ii) 和 (iii) 直到收敛。

• 给定图 2.15 中的起点，该算法只能实现局部最优而不是全局最优。为了解决这个问题，我们可以研究提出更好的初始“猜测”的方法一世，或研究不易受局部最小值影响的梯度下降变体。
• 步长一种（步骤（iii））必须仔细选择。如果一种太小，程序会收敛得很慢；如果一种太大，该过程可能会“超过”最小值并在下一次迭代中获得更差的解决方案。同样，除了仔细调整此参数外，我们还可以研究不依赖于选择此速率的优化方法（例如，参见准牛顿方法，例如 L-BFGS（Liu 和 Nocedal，1989））。
• 步骤 (iv) 中定义的“收敛”定义不明确。我们可以根据变化来定义收敛一世(要么F一世(X))在两次连续的迭代中，或者一旦我们停止在保留（验证）数据上取得进展，我们可能会终止算法（参见第 3.4.2 节）。

## 有限元方法代写

tatistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

Days
Hours
Minutes
Seconds

# 15% OFF

## On All Tickets

Don’t hesitate and buy tickets today – All tickets are at a special price until 15.08.2021. Hope to see you there :)