如果你也在 怎样代写模拟和蒙特卡洛方法simulation and monte carlo method这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。
蒙特卡洛模拟是一种用于预测随机变量潜力时各种结果的概率的模型。蒙特卡洛模拟有助于解释预测和预报模型中风险和不确定性的影响。
couryes-lab™ 为您的留学生涯保驾护航 在代写模拟和蒙特卡洛方法simulation and monte carlo method方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写模拟和蒙特卡洛方法simulation and monte carlo method代写方面经验极为丰富,各种代写模拟和蒙特卡洛方法simulation and monte carlo method相关的作业也就用不着说。
我们提供的模拟和蒙特卡洛方法simulation and monte carlo method及其相关学科的代写,服务范围广, 其中包括但不限于:
- Statistical Inference 统计推断
- Statistical Computing 统计计算
- Advanced Probability Theory 高等楖率论
- Advanced Mathematical Statistics 高等数理统计学
- (Generalized) Linear Models 广义线性模型
- Statistical Machine Learning 统计机器学习
- Longitudinal Data Analysis 纵向数据分析
- Foundations of Data Science 数据科学基础
数学代写|模拟和蒙特卡洛方法作业代写simulation and monte carlo method代考|Modulo 2 Linear Generators
Good random generators must have very large state spaces. For a linear congruential generator, this means that the modulus $m$ must be a large integer. However, for multiple recursive generators, it is not necessary to take a large modulus, as the period length can be as large as $m^k-1$. Because binary operations are in general faster than floating point operations (which are in turn faster than integer operations), it makes sense to consider MRGs and other random number generators that are based on linear recurrences modulo 2. A general framework for such random number generators is given in [10], where the state is a $k$-bit vector $\mathbf{X}t=\left(X{t, 1}, \ldots, X_{t, k}\right)^{\top}$ that is mapped via a linear transformation to a $w$-bit output vector $\mathbf{Y}t=\left(Y{t, 1}, \ldots, Y_{t, w}\right)^{\top}$, from which the random number $U_t \in(0,1)$ is obtained by bitwise decimation as follows: Here, $A$ and $B$ are $k \times k$ and $w \times k$ binary matrices, respectively, and all operations are performed modulo 2. In particular, addition corresponds to the bitwise XOR operation (in particular, $1+1=0$ ). The integer $w$ can be thought of as the word length of the computer (i.e., $w=32$ or 64 ). Usually (but there are exceptions, see [10]) $k$ is taken much larger than $w$.
A popular modulo 2 generator was introduced by Matsumoto and Nishimura [16]. The dimension $k$ of the state vector $\mathbf{X}t$ in Algorithm 2.2.1 is in this case $k=w n$, where $w$ is the word length (default 32) and $n$ a large integer (default 624). The period length for the default choice of parameters can be shown to be $2^{w(n-1)+1}-1=2^{19937}-1$. Rather than take the state $\mathbf{X}_t$ as a $w n \times 1$ vector, it is convenient to consider it as an $n \times w$ matrix with rows $\mathbf{x}_t, \ldots, \mathbf{x}{t+n-1}$. Starting from the seed rows $\mathbf{x}0, \ldots, \mathbf{x}{n-1}$, at each step $t=0,1,2, \ldots$ the $(t+n)$-th row is calculated according to the following rules:
- Take the first $r$ bits of $\mathbf{x}t$ and the last $w-r$ bits of $\mathbf{x}{t+1}$ and concenate them together in a binary vector $\mathbf{x}$.
- Apply the following binary operation to $\mathbf{x}=\left(x_1, \ldots, x_w\right)$ to give a new binary vector $\tilde{\mathbf{x}}$ :
$$
\widetilde{\mathbf{x}}= \begin{cases}\mathbf{x} \gg 1 & \text { if } x_w=0 \ (\mathbf{x} \gg 1) \oplus \mathbf{a} & \text { if } x_w=1\end{cases}
$$ - Let $\mathbf{x}{t+n}=\mathbf{x}{t+m} \oplus \widetilde{\mathbf{x}}$
Here $\oplus$ stands for the XOR operation and $\gg 1$ for the rightshift operation (shift the bits one position to the right, adding a 1 from the left). The binary vector a and the numbers $m$ and $r$ are specified by the user (see below).
数学代写|模拟和蒙特卡洛方法作业代写simulation and monte carlo method代考|Inverse-Transform Method
Let $X$ be a random variable with cdf $F$. Since $F$ is a nondecreasing function, the inverse function $F^{-1}$ may be defined as
$$
F^{-1}(y)=\inf {x: F(x) \geqslant y}, \quad 0 \leqslant y \leqslant 1 .
$$
(Readers not acquainted with the notion inf should read min.) It is easy to show that if $U \sim \mathrm{U}(0,1)$, then
$$
X=F^{-1}(U)
$$
has cdf $F$. That is to say, since $F$ is invertible and $\mathbb{P}(U \leqslant u)=u$, we have
$$
\mathbb{P}(X \leqslant x)=\mathbb{P}\left(F^{-1}(U) \leqslant x\right)=\mathbb{P}(U \leqslant F(x))=F(x) .
$$
Thus, to generate a random variable $X$ with cdf $F$, draw $U \sim \mathrm{U}(0,1)$ and set $X=F^{-1}(U)$. Figure $2.1$ illustrates the inverse-transform method given by the following algorithm:
Generate a random variable from the pdf
$$
f(x)= \begin{cases}2 x, & 0 \leqslant x \leqslant 1 \ 0 & \text { otherwise }\end{cases}
$$
The cdf is
$$
F(x)= \begin{cases}0, & x<0 \\ \int_0^x 2 y \mathrm{~d} y=x^2, & 0 \leqslant x \leqslant 1 \\ 1, & x>1\end{cases}
$$
Applying (2.5), we have
$$
X=F^{-1}(U)=\sqrt{U}
$$
Therefore, to generate a random variable $X$ from the pdf (2.7), first generate a random variable $U$ from $\mathrm{U}(0,1)$ and then take its square root.
模拟和蒙特卡洛方法代写
数学代写|模拟和蒙特卡洛方法作业代写模拟和蒙特卡罗方法代考|Modulo 2线性发生器
好的随机生成器必须有非常大的状态空间。对于线性同余生成器,这意味着模$m$必须是一个大整数。但是,对于多个递归生成器,不需要取大的模数,周期长度可以大到$m^k-1$。因为二进制运算通常比浮点运算快(浮点运算又比整数运算快),所以考虑mrg和其他基于线性递归模2的随机数生成器是有意义的。[10]给出了这类随机数生成器的一般框架,其中状态是一个$k$的位向量$\mathbf{X}t=\left(X{t, 1}, \ldots, X_{t, k}\right)^{\top}$,通过线性变换映射到一个$w$的位输出向量$\mathbf{Y}t=\left(Y{t, 1}, \ldots, Y_{t, w}\right)^{\top}$,从中通过位抽取得到随机数$U_t \in(0,1)$,如下所示:这里,$A$和$B$分别是$k \times k$和$w \times k$二进制矩阵,所有的操作都以模2进行。特别是,加法对应于按位的异或操作(特别是$1+1=0$)。整数$w$可以被认为是计算机的字长(即$w=32$或64)。通常(但也有例外,参见[10])$k$比$w$大得多
Matsumoto和Nishimura介绍了一种流行的模2发生器。算法2.2.1中状态向量$\mathbf{X}t$的维度$k$在本例中是$k=w n$,其中$w$是单词长度(默认32),$n$是大整数(默认624)。默认参数选择的周期长度可以显示为$2^{w(n-1)+1}-1=2^{19937}-1$。与其将状态$\mathbf{X}_t$作为$w n \times 1$向量,不如将其视为包含行$\mathbf{x}_t, \ldots, \mathbf{x}{t+n-1}$的$n \times w$矩阵。从种子行$\mathbf{x}0, \ldots, \mathbf{x}{n-1}$开始,在每一步$t=0,1,2, \ldots$,根据以下规则计算$(t+n)$ -th行:
- 拿第一个 $r$ 一些 $\mathbf{x}t$ 最后一个 $w-r$ 一些 $\mathbf{x}{t+1}$ 把它们集中在一个二元向量中 $\mathbf{x}$.
- Apply the following binary operation to $\mathbf{x}=\left(x_1, \ldots, x_w\right)$ 给出一个新的二元向量 $\tilde{\mathbf{x}}$ :
$$
\widetilde{\mathbf{x}}= \begin{cases}\mathbf{x} \gg 1 & \text { if } x_w=0 \ (\mathbf{x} \gg 1) \oplus \mathbf{a} & \text { if } x_w=1\end{cases}
$$ - Let $\mathbf{x}{t+n}=\mathbf{x}{t+m} \oplus \widetilde{\mathbf{x}}$
这里 $\oplus$ 表示异或操作和 $\gg 1$ 对于右移操作(将位向右移动一个位置,从左边增加一个1)。二元向量a和这些数字 $m$ 和 $r$ 由用户指定(见下面)。
数学代写|模拟和蒙特卡洛方法作业代写模拟和蒙特卡罗方法代考|反变换方法
.
设$X$为随机变量,cdf为$F$。由于$F$是一个非递减函数,反函数$F^{-1}$可以定义为
$$
F^{-1}(y)=\inf {x: F(x) \geqslant y}, \quad 0 \leqslant y \leqslant 1 .
$$
(不熟悉inf概念的读者应该读min。)很容易表明,如果$U \sim \mathrm{U}(0,1)$,则
$$
X=F^{-1}(U)
$$
有cdf $F$。也就是说,由于$F$是可逆的,$\mathbb{P}(U \leqslant u)=u$,我们有
$$
\mathbb{P}(X \leqslant x)=\mathbb{P}\left(F^{-1}(U) \leqslant x\right)=\mathbb{P}(U \leqslant F(x))=F(x) .
$$
因此,要用cdf $F$生成一个随机变量$X$,画出$U \sim \mathrm{U}(0,1)$并设置$X=F^{-1}(U)$。图$2.1$给出了由以下算法给出的反变换方法:
从pdf
$$
f(x)= \begin{cases}2 x, & 0 \leqslant x \leqslant 1 \ 0 & \text { otherwise }\end{cases}
$$
cdf是
$$
F(x)= \begin{cases}0, & x<0 \\ \int_0^x 2 y \mathrm{~d} y=x^2, & 0 \leqslant x \leqslant 1 \\ 1, & x>1\end{cases}
$$
应用(2.5),我们有
$$
X=F^{-1}(U)=\sqrt{U}
$$
因此,要从pdf(2.7)生成一个随机变量$X$,首先从$\mathrm{U}(0,1)$生成一个随机变量$U$,然后取其平方根
统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。
金融工程代写
金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。
非参数统计代写
非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。
广义线性模型代考
广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。
术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。
有限元方法代写
有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。
有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。
tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。
随机分析代写
随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。
时间序列分析代写
随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。
回归分析代写
多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。
MATLAB代写
MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习和应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。