如果你也在 怎样代写模拟和蒙特卡洛方法simulation and monte carlo method这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。
蒙特卡洛模拟是一种用于预测随机变量潜力时各种结果的概率的模型。蒙特卡洛模拟有助于解释预测和预报模型中风险和不确定性的影响。
couryes-lab™ 为您的留学生涯保驾护航 在代写模拟和蒙特卡洛方法simulation and monte carlo method方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写模拟和蒙特卡洛方法simulation and monte carlo method代写方面经验极为丰富,各种代写模拟和蒙特卡洛方法simulation and monte carlo method相关的作业也就用不着说。
我们提供的模拟和蒙特卡洛方法simulation and monte carlo method及其相关学科的代写,服务范围广, 其中包括但不限于:
- Statistical Inference 统计推断
- Statistical Computing 统计计算
- Advanced Probability Theory 高等楖率论
- Advanced Mathematical Statistics 高等数理统计学
- (Generalized) Linear Models 广义线性模型
- Statistical Machine Learning 统计机器学习
- Longitudinal Data Analysis 纵向数据分析
- Foundations of Data Science 数据科学基础
数学代写|模拟和蒙特卡洛方法作业代写simulation and monte carlo method代考|Duality
The aim of duality is to provide an alternative formulation of an optimization problem that is often more computationally efficient or has some theoretical significance (see [7], page 219). The original problem (1.66) is referred to as the primal problem, whereas the reformulated problem, based on Lagrange multipliers, is referred to as the dual problem. Duality theory is most relevant to convex optimization problems. It is well known that if the primal optimization problem is (strictly) convex, then the dual problem is (strictly) concave and has a (unique) solution from which the optimal (unique) primal solution can be deduced.
Definition 1.16.5 (Lagrange Dual Program) The Lagrange dual program of the primal program (1.66), is
$\begin{aligned} \max {\boldsymbol{\alpha}, \boldsymbol{\beta}} & \mathcal{L}^(\boldsymbol{\alpha}, \boldsymbol{\beta}) \ \text { subject to: } & \boldsymbol{\alpha} \geqslant 0, \end{aligned}$ where $\mathcal{L}^$ is the Lagrange dual function:
$$
\mathcal{L}^(\boldsymbol{\alpha}, \boldsymbol{\beta})=\inf {\mathbf{x} \in \mathscr{X}} \mathcal{L}(\mathbf{x}, \boldsymbol{\alpha}, \boldsymbol{\beta}) .
$$
It is not difficult to see that if $f^$ is the minimal value of the primal problem, then $\mathcal{L}^(\boldsymbol{\alpha}, \boldsymbol{\beta}) \leqslant f^$ for any $\boldsymbol{\alpha} \geqslant 0$ and any $\boldsymbol{\beta}$. This property is called weak duality. The Lagrangian dual program thus determines the best lower bound on $f^$. If $d^$ is the optimal value for the dual problem, then $d^$. The difference $f^-d^$ is called the duality gap.
The duality gap is extremely useful for providing lower bounds for the solutions of primal problems that may be impossible to solve directly. It is important to note that for linearly constrained problems, if the primal is infeasible (does not have a solution satisfying the constraints), then the dual is either infeasible or unbounded. Conversely, if the dual is infeasible, then the primal has no solution. Of crucial importance is the strong duality theorem, which states that for convex programs (1.66) with linear constrained functions $h_i$ and $g_i$ the duality gap is zero, and any $\mathrm{x}^$ and $\left(\boldsymbol{\alpha}^, \boldsymbol{\beta}^*\right)$ satisfying the KKT conditions are (global) solutions to the primal and dual programs, respectively. In particular, this holds for linear and convex quadratic programs (note that not all quadratic programs are convex).
For a convex primal program with $C^1$ objective and constraint functions, the Lagrangian dual function (1.70) can be obtained by simply setting the gradient (with respect to $\mathbf{x})$ of the Lagrangian $\mathcal{L}(\mathbf{x}, \boldsymbol{\alpha}, \boldsymbol{\beta})$ to zero. One can further simplify the dual program by substituting into the Lagrangian the relations between the variables thus obtained.
数学代写|模拟和蒙特卡洛方法作业代写simulation and monte carlo method代考|RANDOM NUMBER GENERATION
In the early days of simulation, randomness was generated by manual techniques, such as coin flipping, dice rolling, card shuffling, and roulette spinning. Later on, physical devices, such as noise diodes and Geiger counters, were attached to computers for the same purpose. ‘I’he prevailing belief held that only mechanical or electronic devices could produce truly random sequences. Although mechanical devices are still widely used in gambling and lotteries, these methods were abandoned by the computer-simulation community for several reasons: (1) mechanical methods were too slow for general use, (2) the generated sequences could not be reproduced, and (3) it was found that the generated numbers exhibit both bias and dependence. Although certain modern physical generation methods are fast and would pass most statistical tests for randomness (e.g., those based on the universal background radiation or the noise of a PC chip), their main drawback remains their lack of repeatability. Most of today’s random number generators are not based on physical devices but on simple algorithms that can be easily implemented on a computer. They are fast, require little storage space, and can readily reproduce a given sequence of random numbers. Importantly, a good random number generator captures all the important statistical properties of true random sequences, even though the sequence is generated by a deterministic algorithm. For this reason these generators are sometimes called pseudorandom.
Most computer languages already contain a built-in pseudorandom number generator. The user is typically requested only to input the initial seed, $X_0$, and upon invocation the random number generator produces a sequence of independent, uniform $(0,1)$ random variables. We therefore assume in this book the availability of such a “black box” that is capable of producing a stream of pseudorandom numbers. In Matlab, for example, this is provided by the rand function. The “seed” of the random number generator, which can be set by the rng function, determines which random stream is used, and this is very useful for testing purposes.
模拟和蒙特卡洛方法代写
数学代写|模拟和蒙特卡洛方法作业代写模拟和蒙特卡罗方法代考|对偶性
对偶性的目的是为优化问题提供一种可选的公式,这种公式通常计算效率更高或具有一定的理论意义(见[7],第219页)。原始问题(1.66)被称为原始问题,而基于拉格朗日乘子的重新表述的问题被称为对偶问题。对偶理论与凸优化问题最为相关。众所周知,如果原优化问题是(严格)凸的,那么对偶问题是(严格)凹的,并且有一个(唯一)解,从这个解可以推导出最优(唯一)原解
定义1.16.5(拉格朗日对偶程序)原程序(1.66)的拉格朗日对偶程序是
$\begin{aligned} \max {\boldsymbol{\alpha}, \boldsymbol{\beta}} & \mathcal{L}^(\boldsymbol{\alpha}, \boldsymbol{\beta}) \ \text { subject to: } & \boldsymbol{\alpha} \geqslant 0, \end{aligned}$,其中$\mathcal{L}^$是拉格朗日对偶函数:
$$
\mathcal{L}^(\boldsymbol{\alpha}, \boldsymbol{\beta})=\inf {\mathbf{x} \in \mathscr{X}} \mathcal{L}(\mathbf{x}, \boldsymbol{\alpha}, \boldsymbol{\beta}) .
$$
不难看出,如果$f^$是原问题的最小值,那么$\mathcal{L}^(\boldsymbol{\alpha}, \boldsymbol{\beta}) \leqslant f^$对于任意$\boldsymbol{\alpha} \geqslant 0$和任意$\boldsymbol{\beta}$。这个性质叫做弱对偶性。拉格朗日对偶程序确定了$f^$的最佳下界。如果$d^$是对偶问题的最优值,则$d^$。差异$f^-d^$被称为对偶差。
对偶间隙对于为原始问题的解提供下界是非常有用的,这些问题可能无法直接求解。值得注意的是,对于线性约束问题,如果原矩阵是不可行的(没有满足约束条件的解),那么对偶矩阵要么是不可行的,要么是无界的。相反,如果对偶不可行,则原子无解。重要的是强对偶定理,它表明对于凸规划(1.66)具有线性约束函数$h_i$和$g_i$的对偶差距为零,并且任何满足KKT条件的$\mathrm{x}^$和$\left(\boldsymbol{\alpha}^, \boldsymbol{\beta}^*\right)$分别是原规划和对偶规划的(全局)解。特别地,这对线性和凸二次规划都成立(注意不是所有的二次规划都是凸的)
对于具有$C^1$目标和约束函数的凸原程序,只需将拉格朗日函数$\mathcal{L}(\mathbf{x}, \boldsymbol{\alpha}, \boldsymbol{\beta})$的梯度(相对于$\mathbf{x})$的梯度)设为零,即可得到拉格朗日对偶函数(1.70)。我们可以将由此得到的变量之间的关系代入拉格朗日量,从而进一步简化对偶程序
数学代写|模拟和蒙特卡洛方法作业代写模拟和蒙特卡罗方法代考|RANDOM NUMBER GENERATION
.
在早期的模拟中,随机性是通过手工技术产生的,如掷硬币、掷骰子、洗牌和轮盘赌。后来,诸如噪声二极管和盖革计数器等物理设备也被附加到计算机上,以达到同样的目的。当时普遍认为只有机械或电子设备才能产生真正的随机序列。虽然机械装置在赌博和彩票中仍被广泛使用,但由于以下几个原因,计算机模拟界放弃了这些方法:(1)机械方法太慢,无法普遍使用;(2)生成的序列无法重现;(3)发现生成的数字既具有偏见又具有依赖性。虽然某些现代物理生成方法速度很快,并且能够通过大多数随机性统计测试(例如,基于通用背景辐射或PC芯片噪声的测试),但它们的主要缺点仍然是缺乏可重复性。现在的大多数随机数生成器都不是基于物理设备,而是基于可以在计算机上轻松实现的简单算法。它们速度快,需要的存储空间少,而且可以很容易地再现给定的随机数序列。重要的是,一个好的随机数生成器捕获真正随机序列的所有重要统计属性,即使序列是由确定性算法生成的。因此,这些生成器有时被称为伪随机
大多数计算机语言已经包含了内置的伪随机数生成器。通常只要求用户输入初始种子$X_0$,在调用时,随机数生成器生成一个独立的、统一的$(0,1)$随机变量序列。因此,我们在本书中假设有这样一个能够产生伪随机数流的“黑盒子”。例如,在Matlab中,这是由rand函数提供的。随机数生成器的“种子”可以由rng函数设置,它决定使用哪个随机流,这对于测试目的非常有用
统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。
金融工程代写
金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。
非参数统计代写
非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。
广义线性模型代考
广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。
术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。
有限元方法代写
有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。
有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。
tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。
随机分析代写
随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。
时间序列分析代写
随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。
回归分析代写
多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。
MATLAB代写
MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习和应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。