统计代写|广义线性模型代写generalized linear model代考|STAT3030

Doug I. Jones

Lorem ipsum dolor sit amet, cons the all tetur adiscing elit

couryes-lab™ 为您的留学生涯保驾护航 在代写广义线性模型generalized linear model方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写广义线性模型generalized linear model代写方面经验极为丰富，各种代写广义线性模型generalized linear model相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础
couryes™为您提供可以保分的包课服务

统计代写|广义线性模型代写generalized linear model代考|EXPECTED MEAN SQUARES

The mean square of an effect is the sum of squares of that effect divided by the corresponding degrees of freedom. For complete, balanced designs the mean

square is $\left[1 / \operatorname{tr}\left(\mathbf{A}_s\right)\right] \mathbf{Y}^{\prime} \mathbf{A}_s \mathbf{Y}$, since the degrees of freedom equal the $\operatorname{tr}\left(\mathbf{A}_s\right)$. The expected value of the mean square, usually called the expected mean square (EMS), is a function of the mean vector $\mu=\mathbf{E}(\mathbf{Y})$ and of the variance parameters in $\boldsymbol{\Sigma}=\operatorname{cov}(\mathbf{Y})$. The expected mean square indicates how the mean squares can be used to obtain unbiased estimates of functions of the variance parameters.

The expected mean square in complete, balanced designs is defined in the following theorem. The proof of the theorem is a direct result of Theorem 1.3.2.
Theorem 4.4.1 Let $\mathbf{Y}$ be an $n \times 1$ random vector associated with the observations of a complete, balanced factorial experiment with an $n \times 1$ mean vector $\mu=E(\mathbf{Y})$ and $n \times n$ covariance matrix $\mathbf{\Sigma}=\operatorname{cov}(\mathbf{Y})$. The expected mean square associated with the sum of squares $\mathbf{Y}^{\prime} \mathbf{A Y}$ is $\mathbf{E}\left{\left[1 / \operatorname{tr}\left(\mathbf{A}_s\right)\right] \mathbf{Y}^{\prime} \mathbf{A Y}\right}=\left[\operatorname{tr}(\mathbf{A} \mathbf{\Sigma})+\boldsymbol{\mu}^{\prime} \mathbf{A} \boldsymbol{\mu}\right] / \operatorname{tr}(\mathbf{A})$ where $\operatorname{tr}$ (A) equals the degrees of freedom associated with $\mathbf{Y}^{\prime} \mathbf{A} \mathbf{Y}$.

Example 4.4.1 Consider the experiment described in Examples 4.3.1 and 4.3.3 in which a finite model was assumed. The sums of squares due to the random effect $B$ and the fixed effect $T$ are $\mathbf{Y}^{\prime} \mathbf{A}2 \mathbf{Y}$ and $\mathbf{Y}^{\prime} \mathbf{A}_3 \mathbf{Y}$, respectively, where $\mathbf{A}_2=\left(\mathbf{1}_b-\frac{1}{b} \mathbf{J}_b\right) \otimes \frac{1}{t} \mathbf{J}_t \otimes \frac{1}{r} \mathbf{J}_r, \mathbf{A}_3=\frac{1}{b} \mathbf{J}_b \otimes\left(\mathbf{I}_t-\frac{1}{t} \mathbf{J}_t\right) \otimes \frac{1}{r} \mathbf{J}_r$, and the btr $\times 1$ random vector $\mathbf{Y}=\left(Y{111}, \ldots, Y_{11 r}, \ldots, Y_{b t 1}, \ldots, Y_{b t r}\right)^{\prime}$. The mean vector $\boldsymbol{\mu}=$ $\mathrm{E}(\mathbf{Y})=\mathrm{E}\left(Y_{111}, \ldots, Y_{11 r}, \ldots, Y_{b t 1}, \ldots, Y_{b t r}\right)^{\prime}=\mathbf{1}b \otimes\left(\mu_1, \ldots, \mu_t\right)^{\prime} \otimes \mathbf{1}_r$. Note that $\mathbf{A}_2 \boldsymbol{\Sigma}=\left[\operatorname{tr} \sigma_B^2+\sigma{R(B T)}^2\right] \mathbf{A}2$ and $\mathbf{A}_3 \Sigma=\left[r \sigma{B T}^2+\sigma_{R(B T)}^2\right] \mathbf{A}3$. Therefore, hy Theorem 4.4.1, the expected mean square of the random effect $B$ equals \begin{aligned} \mathrm{E}\left[\mathbf{Y}^{\prime} \mathbf{A}_2 \mathbf{Y} / \operatorname{tr}\left(\mathbf{A}_2\right)\right]=& {\left[r\left(\mathbf{A}_2 \Sigma\right)+\boldsymbol{\mu}^{\prime} \mathbf{A}_2 \mu\right] / \operatorname{tr}\left(\mathbf{A}_2\right)=\left[\operatorname{tr} \sigma_B^2+\sigma{R(B T)}^2\right] } \ &+\left{\left[\mathbf{1}b \otimes\left(\mu_1, \ldots, \mu_t\right)^{\prime} \otimes \mathbf{1}_r\right]^{\prime}\left[\left(\mathbf{I}_b-\frac{1}{b} \mathbf{J}_b\right) \otimes \frac{1}{t} \mathbf{J}_t \otimes \frac{1}{r} \mathbf{J}_r\right]\right.\ &\left.\times\left[\mathbf{1}_b \otimes\left(\mu_1, \ldots, \mu_t\right)^{\prime} \otimes \mathbf{1}_r\right] /(b-1)\right} \ =& \operatorname{tr} \sigma_B^2+\sigma{R(B T)}^2 \end{aligned}
and the expected mean square of the fixed factor $T$ equals

统计代写|广义线性模型代写generalized linear model代考|

The sum of squares and covariance matrix algorithms are now applied to a series of complete, balanced factorial experiments. As mentioned in Section 4.3, finite and infinite model covariance structures are reparameterizations of each other. Therefore, the choice between the finite and infinite model is somewhat arbitrary. For the remainder of this text, the finite model is assumed. Therefore, unless specifically stated, subsequent covariance matrices for complete, balanced factorial experiments will always be constructed with Rules $\Sigma 1, \Sigma 2, \Sigma 2.1, \Sigma 2$. , and $\Sigma 2.3$.
Example 4.5.1 Consider a two-way cross classification where the first two factors $S$ and $T$ are fixed with $i=1, \ldots, s$ and $j=1, \ldots, t$ levels and the third factor is a set of $k=1, \ldots, r$ random replicates nested in the $s t$ combinations of the first two factors. Let $Y_{i j k}$ be a random variable representing the $k^{\text {th }}$ replicate observation in the $i j^{\text {th }}$ combination of the two fixed factors. Let the $s t r \times 1$ random vector $\mathbf{Y}=\left(Y_{111}, \ldots, Y_{11 r}, \ldots, Y_{s t 1}, \ldots, Y_{s t r}\right)^{\prime}$. The model is
$$Y_{i j k}=\mu_{i j}+R(S T){(i j) k}$$ where $\mu{i j}$ are constants representing the mean effect of the $i j^{\text {th }}$ combination of the two fixed factors and $R(S T){(i j) k}$ are str random variables representing the effect of the nested replicates. Assume that the str random variables $R(S T){(i j) k} \sim$ iid $\mathbf{N}1\left(0, \sigma{R(S T)}^2\right)$. Therefore, the $s t r \times 1$ random vector $\mathbf{Y} \sim \mathbf{N}{s t r}(\mu, \mathbf{\Sigma})$ where the str $\times 1$ mean vector \begin{aligned} \boldsymbol{\mu} &=\mathrm{E}\left(Y{111}, \ldots, Y_{11 r}, \ldots, Y_{s t 1}, \ldots, Y_{s t r}\right)^{\prime} \ &=\left(\mu_{11} \mathbf{1}r, \ldots, \mu{s t} \mathbf{1}r\right)^{\prime} \ &=\left(\mu{11}, \ldots, \mu_{s t}\right)^{\prime} \otimes \mathbf{1}r \end{aligned} and the $\operatorname{str} \times \operatorname{str}$ covariance matrix $$\boldsymbol{\Sigma}=\sigma{R(S T)}^2\left[\mathbf{I}_s \otimes \mathbf{I}_t \otimes \mathbf{I}_r\right]$$

广义线性模型代考

统计代写|广义线性模型代写generalized linear model代考|平方和和协方差矩阵算法

$$\Sigma=\sigma_B^2\left[\mathbf{I} b \otimes \mathbf{J}_t \otimes \mathbf{J}_r\right] \quad+\sigma B T^2\left[\mathbf{I} b \otimes\left(\mathbf{I}_t-\frac{1}{t} \mathbf{J}_t\right) \otimes \mathbf{J}_r\right]+\sigma R(B T)^2\left[\mathbf{I}_b\right.$$

统计代写|广义线性模型代写generalized linear model代考|线性模型

$\Sigma=\sigma_B^2 \quad\left[\mathbf{I} b \otimes \mathbf{J}t \otimes \mathbf{J}_r\right] \quad+\sigma B T^2 \quad\left[\mathbf{I} b \otimes \mathbf{I}_t \otimes \mathbf{J}_r\right] \quad+\sigma R(B T)^2 \quad\left[\mathbf{I} b \otimes \mathbf{I}_t \otimes\right.$ 屈管有限和无限模型以不同的方式激发并产生不同的协方差结构，但从代数上讲，这两个协 方差结构只是彼此的简单重新参数化。为了说明这一点，考虑前面的实验 $b$ 随机块， $t$ 固定治 疗，和 $r$ 每个处理随机重复。首先，用以下等价形式重写有限模型的协方差矩阵。 $\Sigma=\left(\sigma_B^2-\frac{1}{t} \sigma B T^2\right) \quad\left[\mathbf{I} b \otimes \mathbf{J}_t \otimes \mathbf{J}_r\right] \quad+\sigma B T^2 \quad\left[\mathbf{I} b \otimes \mathbf{I}_t \otimes \mathbf{J}_r\right]+\sigma R(B T)^2$ 现在要区分有限和无限模型中的参数，重命名方差参数 $\sigma_B^2, \sigma B T^2$ ，和 $\sigma{R(B T)}^2$ 在无限模型

有限元方法代写

tatistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

Days
Hours
Minutes
Seconds

15% OFF

On All Tickets

Don’t hesitate and buy tickets today – All tickets are at a special price until 15.08.2021. Hope to see you there :)