数学代写|信息论作业代写information theory代考|STEM2004

Doug I. Jones

Doug I. Jones

Lorem ipsum dolor sit amet, cons the all tetur adiscing elit

如果你也在 怎样代写信息论information theory这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

信息理论是对数字信息的量化、存储和通信的科学研究。该领域从根本上是由哈里-奈奎斯特和拉尔夫-哈特利在20世纪20年代以及克劳德-香农在20世纪40年代的作品所确立的。该领域处于概率论、统计学、计算机科学、统计力学、信息工程和电气工程的交叉点。

couryes-lab™ 为您的留学生涯保驾护航 在代写信息论information theory方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写信息论information theory代写方面经验极为丰富,各种代写信息论information theory相关的作业也就用不着说。

我们提供的信息论information theory及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
数学代写|信息论作业代写information theory代考|STEM2004

数学代写|信息论作业代写information theory代考|The Low-Energy Regime

To explore the low-energy regime, we consider bandlimited signals with $N_{0}$ degrees of freedom subject to the fixed energy constraint (1.22), and assume the addition of random Gaussian noise independently to each degree of freedom, subject to (1.68). In this case, the energy of the signal is bounded, while the total amount of noise is proportional to $N_{0}$, and we have
$$
\frac{1}{N_{0}} \sum_{n=1}^{N_{0}} x_{n}^{2} \leq \frac{E}{N_{0}}
$$
which tends to zero as $N_{0} \rightarrow \infty$. Substituting $E / N_{0}$ for $P$ into (1.73) and using a first-order Taylor expansion of the logarithmic function, we have
$$
\begin{aligned}
C &=\frac{1}{2} \log \left(1+\frac{E}{N_{0} \epsilon^{2}}\right) \
& \simeq \frac{E}{2 N_{0} \epsilon^{2}} \log e \text { bits per degree of freedom. }
\end{aligned}
$$
It follows that in a regime where the energy of the signal is negligible compared to the energy of the noise, the total amount of information carried by any one signal in the space and expressed in bits is proportional to the energy of the signal, and remains bounded even if the number of degrees of freedom tends to infinity. On the other hand, the capacity per degree of freedom in (1.77) vanishes as $N_{0} \rightarrow \infty$. This is due to the signal being spread over a large number of degrees of freedom, while a constant amount of noise is added to each degree of freedom.

数学代写|信息论作业代写information theory代考|The High-Energy Regime

In both the deterministic model of Kolmogorov and the stochastic model of Shannon, we can increase the amount of information associated with the waveforms in the signals’ space by increasing the signal-to-noise ratio. By (1.24), (1.26), (1.46), and (1.73), this increases entropy and capacity by a logarithmic factor. We now ask whether we can also spend energy to obtain a linear increase of the amount of information, keeping a fixed signal-to-noise ratio. A possible strategy seems to be to increase the number of degrees of freedom, since this increases entropy and capacity linearly, and by (1.15) and (1.18) it can be accomplished by increasing the frequency of radiation. It turns out, however, that high-frequency signals are also observed at a coarser resolution, so that increasing the frequency while keeping the signal-to-noise ratio constant requires a corresponding increase of the energy per degree of freedom of the radiated signal, and an ultimate limit to the amount of information is imposed by the laws of high-energy physics.

To view these effects in more detail, let us have a closer look at the quantities determining the number of degrees of freedom. By (1.15), in a two-dimensional setting the number of space-wavenumber degrees of freedom at every frequency $\omega$ depends on size of the cut-set boundary and on the frequency of radiation. For any arbitrary configuration of sources and scatterers, we can increase the number of space-wavenumber degrees of freedom by transmitting at higher and higher frequencies. This improves the spatial resolution of the received waveform on the cut-set boundary. Similarly, in a three-dimensional setting (1.18) shows that the number of spatial degrees of freedom at each frequency $\omega$ increases with the frequency of radiation.
When radiation occurs over a range of frequencies of support $2 \Omega$ centered around the origin, the total number of degrees of freedom is given by (1.16) and (1.19), in two and three dimensions respectively. These equations show that the number of degrees of freedom grows with the largest frequency $\Omega$ of the radiated signal.

Finally, when radiation occurs over a bandwidth $\Omega$ centered around a carrier frequency $\omega_{\mathrm{c}} \gg \Omega$, as depicted in Figure 1.25, a computation analogous to (1.16) gives the following total number of degrees of freedom in the two-dimensional setting:
$$
N_{0}=\frac{T}{\pi} \frac{2 \pi r}{c \pi} \int_{\omega_{1}}^{\omega_{2}} \omega d \omega
$$ $=\frac{T}{\pi} \frac{2 \pi r}{c \pi} \frac{\left(\omega_{2}^{2}-\omega_{1}^{2}\right)}{2}$
$=\frac{\Omega T}{\pi} \frac{2 \pi r \omega_{c}}{c \pi} .$

数学代写|信息论作业代写information theory代考|STEM2004

信息论代写

数学代写|信息论作业代写information theory代考|The Low-Energy Regime

为了探索低能量状态,我们考虑带限信昊 $N_{0}$ 自由度服从固定能量约束(1.22),并假设随 机高斯噪声独立地添加到每个自由度,服从 (1.68) 。在这种情况下,信号的能量是有界 的,而噪声的总量与 $N_{0}$ ,我们有
$$
\frac{1}{N_{0}} \sum_{n=1}^{N_{0}} x_{n}^{2} \leq \frac{E}{N_{0}}
$$
趋向于零 $N_{0} \rightarrow \infty$. 替代 $E / N_{0}$ 为了 $P$ 进入 (1.73) 并使用对数函数的一阶泰勒展开,我 们有 $C=\frac{1}{2} \log \left(1+\frac{E}{N_{0} \epsilon^{2}}\right) \quad \simeq \frac{E}{2 N_{0} \epsilon^{2}} \log e$ bits per degree of freedom.
由此可见,在信号能量与噪声能量相比可以忽略不计的情况下,空间中任何一个信号携带 的并以比特表示的信息总量与信号的能量成正比,并保持即使自由度的数量趋于无穷大, 也是有界的。另一方面, (1.77) 中每个自由度的容量消失为 $N_{0} \rightarrow \infty$. 这是由于信号分 布在大量自由度上,而每个自由度都掭加了恒定数量的噪声。

数学代写|信息论作业代写information theory代考|The High-Energy Regime

在 Kolmogorov 的确定性模型和 Shannon 的随机模型中,我们可以通过提高信橾比来增 加与信号空间中的波形相关的信息量。通过 (1.24)、(1.26)、(1.46) 和 (1.73),这会以对数 因子增加樀和容量。我们现在问是否也可以花费能量来获得信息量的线性增加,保持固定 的信噪比。一种可能的策略似乎是增加自由度的数量,因为这会线性增加嫡和容量,并且 通过 (1.15) 和 (1.18) 可以通过增加辐射频率来实现。然而,事实证明,高频信号也以 较粗的分辨率被观察到,
为了更详细地育看这些影响,让我们仔细看看决定自由度数量的数量。由 (1.15),在二维 设置中,每个频率的空间波数自由度数 $\omega$ 取决于割集边界的大小和辐射频率。对于任意配 置的源和散射体,我们可以通过在越来越高的频率上传输来增加空间波数自由度的数量。 这提高了割集边界上接收波形的空间分辨率。类似地,在三维设置中 (1.18) 表明每个频率 的空间自由度数 $\omega$ 随着辐射频率的增加。
当辐射发生在一定范围的支持颓率上时 $2 \Omega$ 以原点为中心,自由度总数由 (1.16) 和 (1.19) 给 出,分别为二维和三维。这些方程表明,自由度的数量随着最大频率的垾加而增长 $\Omega$ 的辐 射信号。
最后,当辐射发生在一个带宽上时 $\Omega$ 以载波频率为中心 $\omega_{\mathrm{c}} \gg \Omega$ ,如图 $1.25$ 所示,类似于 (1.16) 的计算给出了二维设置中的下列自由度总数:
$$
\begin{aligned}
&=\frac{T}{\pi} \frac{2 \pi r}{c \pi} \frac{\left(\omega_{2}^{2}-\omega_{1}^{2}\right)}{2} \
&=\frac{\Omega T T}{\pi} \frac{2 \pi r \omega_{c}}{c \pi} .
\end{aligned}
$$
$$
N_{0}=\frac{T}{\pi} \frac{2 \pi r}{c \pi} \int_{\omega_{1}}^{\omega_{2}} \omega d \omega
$$

数学代写|信息论作业代写information theory代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

Days
Hours
Minutes
Seconds

hurry up

15% OFF

On All Tickets

Don’t hesitate and buy tickets today – All tickets are at a special price until 15.08.2021. Hope to see you there :)