如果你也在 怎样代写信息论information theory这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。
信息理论是对数字信息的量化、存储和通信的科学研究。该领域从根本上是由哈里-奈奎斯特和拉尔夫-哈特利在20世纪20年代以及克劳德-香农在20世纪40年代的作品所确立的。该领域处于概率论、统计学、计算机科学、统计力学、信息工程和电气工程的交叉点。
couryes-lab™ 为您的留学生涯保驾护航 在代写信息论information theory方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写信息论information theory代写方面经验极为丰富,各种代写信息论information theory相关的作业也就用不着说。
我们提供的信息论information theory及其相关学科的代写,服务范围广, 其中包括但不限于:
- Statistical Inference 统计推断
- Statistical Computing 统计计算
- Advanced Probability Theory 高等概率论
- Advanced Mathematical Statistics 高等数理统计学
- (Generalized) Linear Models 广义线性模型
- Statistical Machine Learning 统计机器学习
- Longitudinal Data Analysis 纵向数据分析
- Foundations of Data Science 数据科学基础
数学代写|信息论作业代写information theory代考|Capacity with Gaussian Noise
In Chapter 12, we provide a derivation of the capacity of the additive Gaussian noise channnel considering communication with waveforms of $N_{0}$ degress of freedom, sukject to the constraint
$$
\left(\sum_{n=1}^{N_{0}} x_{n}^{2}\right)^{1 / 2} \leq \sqrt{P N_{0}}
$$
Compared to (1.59), the more stringent constraint (1.70) is an empirical average rather than a statistical one, since from (1.70) we have
$$
\frac{1}{N_{0}} \sum_{n=0}^{N_{0}} x_{n}^{2} \leq P
$$
This ensures that all transmitted signals are inside a hypersphere of radius $\sqrt{P N_{0}}$, and requires that any realization of a random waveform must draw $N_{0}$ coefficients in a dependent fashion. Geometrically, since we are only allowed to pick signals at random inside the hypersphere of radius $\sqrt{P N_{0}}$, signals that are close to the boundary along one dimension must necessarily be far from it along the other dimensions. In contrast, in Section 1.4.6 we drew coefficients independently, subject to the weaker constraint (1.59). Fortunately, however, probabilistic concentration ensures that for any independent construction,
$$
\lim {N{0} \rightarrow \infty} \frac{1}{N_{0}} \sum_{n=1}^{N_{0}} x_{n}^{2}=\mathbb{E}\left(\mathbf{X}^{2}\right) \leq P,
$$
and the probability of constructing a random signal that violates the deterministic constraint (1.70) is arbitrarily small as $N_{0} \rightarrow \infty$. The geometric interpretation of (1.72) is that by drawing independent coefficients subject to the constraint (1.59), signals are contained with high probability inside the high-dimensional sphere of radius $\sqrt{P N_{0}}$, as $N_{0} \rightarrow \infty$.
数学代写|信息论作业代写information theory代考|Energy Limits
Electromagnetic waveforms can transport an amount of information that scales linearly with the number of degrees of freedom, representing the dimensionality of the space, and logarithmically with the ratio of the maximum energy of the signal to the energy of the noise. In the deterministic model of Kolmogorov, in which a bounded amount of noise of norm at most $\epsilon$ is added to the signal, we can communicate a number of bits proportional to the number of degrees of freedom. In the stochastic model of Shannon, in which random noise of standard deviation at most $\epsilon$ is added independently on each coordinate of the signal’s space and the signal’s energy is proportional to the number of coordinates, we can communicate a number of bits proportional to the number of degrees of freedom, with arbitrarily low probability of error.
We now explore two additional limiting regimes. In a low signal-to-noise ratio regime, where the energy of the signal vanishes compared to the energy of the noise, the capacity is directly proportional to the energy of the signal and inversely proportional to the number of degrees of freedom. On the other hand, if we keep a constant signal-to-noise ratio and increase the number of degrees of freedom, the capacity increases. However, this also requires energy expenditure, and it turns out that the number of degrees of freedom is ultimately limited by the laws of high-energy physics, and cannot grow beyond what is imposed by general relativity to keep the radiating system gravitationally stable.
信息论代写
数学代写|信息论作业代写information theory代考|Capacity with Gaussian Noise
在第 12 章中,我们提供了加性高斯噪声通道容量的推导,考虑到与波形的通信 $N_{0}$ 自由 度,不受约束
$$
\left(\sum_{n=1}^{N_{0}} x_{n}^{2}\right)^{1 / 2} \leq \sqrt{P N_{0}}
$$
与 (1.59) 相比,更严格的约束 (1.70) 是经验平均值而不是统计平均值,因为从 (1.70) 我们有
$$
\frac{1}{N_{0}} \sum_{n=0}^{N_{0}} x_{n}^{2} \leq P
$$
这确保所有传输的信号都在半径的超球面内 $\sqrt{P N_{0}}$ ,并且要求任何随机波形的实现都必须 绘制 $N_{0}$ 相关系数。几何上,因为我们只被允许在半径迢球面内随机选择信号 $\sqrt{P N_{0}}$ ,沿 一个维度靠近边界的信号必须沿其他维度远离边界。相比之下,在第 $1.4 .6$ 节中,我们独立绘制了系数,受到较弱的约束 (1.59) 。然而幸运的是,概率集中确保对于任何独立的 构造,
$$
\lim N 0 \rightarrow \infty \frac{1}{N_{0}} \sum_{n=1}^{N_{0}} x_{n}^{2}=\mathbb{E}\left(\mathbf{X}^{2}\right) \leq P
$$
并且构造违反确定性约束 (1.70) 的随机信号的概率任意小,因为 $N_{0} \rightarrow \infty$. (1.72) 的 几何解释是,通过绘制受约束 (1.59) 约束的独立系数,信号以高概率包含在半径的高维 球内 $\sqrt{P N_{0}}$ , 作为 $N_{0} \rightarrow \infty$.
数学代写|信息论作业代写information theory代考|Energy Limits
电磁波形可以传输一定量的信息,这些信息与自由度的数量成线性比例,代表空间的维度,并且与信号的最大能量与噪声能量的比率成对数。在 Kolmogorov 的确定性模型中,其中最多有一定数量的范数噪声ε添加到信号中,我们可以传达与自由度数成正比的比特数。在香农的随机模型中,其中标准差的随机噪声最多ε在信号空间的每个坐标上独立添加并且信号的能量与坐标的数量成正比,我们可以传达与自由度的数量成正比的比特数,并且具有任意低的错误概率。
我们现在探索两个额外的限制机制。在低信噪比情况下,信号的能量与噪声的能量相比消失,容量与信号的能量成正比,与自由度的数量成反比。另一方面,如果我们保持恒定的信噪比并增加自由度的数量,容量就会增加。然而,这也需要能量消耗,事实证明,自由度的数量最终受到高能物理定律的限制,不能超过广义相对论为保持辐射系统引力稳定而强加的数量。
统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。
金融工程代写
金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。
非参数统计代写
非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。
广义线性模型代考
广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。
术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。
有限元方法代写
有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。
有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。
tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。
随机分析代写
随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。
时间序列分析代写
随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。
回归分析代写
多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。
MATLAB代写
MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习和应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。