# 统计代写|时间序列分析代写Time-Series Analysis代考|STAT758

#### Doug I. Jones

Lorem ipsum dolor sit amet, cons the all tetur adiscing elit

couryes-lab™ 为您的留学生涯保驾护航 在代写时间序列分析Time-Series Analysis方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写时间序列分析Time-Series Analysis代写方面经验极为丰富，各种代写时间序列分析Time-Series Analysis相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础
couryes™为您提供可以保分的包课服务

## 统计代写|时间序列分析代写Time-Series Analysis代考|THRESHOLD AND SMOOTH TRANSITION AUTOREGRESSIONS

11.18 A popular class of nonlinear model is the self-exciting threshold autoregressive (SETAR) process, which allows for asymmetry by defining a set of piecewise autoregressive models whose switch points, or “thresholds,” are generally unknown (see Tong and Lim, 1980; Tong, 1990; Teräsvirta, 2006):
$$x_t=\sum_{j=1}^r\left(\phi_{j, 1} x_{t-1}+\cdots+\phi_{j, p} x_{t-p}+a_{j, t}\right) \mathbf{1}\left(c_{j-1}<x_{t-d} \leq c_j\right)$$
Here $d$ is the (integer-valued) delay parameter and $c_1<c_2<\ldots<c_{r-1}$ are the thresholds: the model is often denoted $\operatorname{SETAR}(r: p, d) .{ }^3$ It is assumed that $a_{j, t} \sim W N\left(0, \sigma_j^2\right), j=1, \ldots, r$, so that the error variance is allowed to alter across the $r$ “regimes.” A popular version of (11.7) is the two-regime SETAR(2: $p, d)$ model:
\begin{aligned} x_t=&\left(\phi_{1,1} x_{t-1}+\cdots+\phi_{1, p} x_{t-p}+a_{1, t}\right) \mathbf{1}\left(x_{t-d} \leq c_1\right) \ &+\left(\phi_{2,1} x_{t-1}+\cdots+\phi_{2, p} x_{t-p}+a_{2, t}\right)\left(1-\mathbf{1}\left(x_{t-d} \leq c_1\right)\right) \end{aligned}
An important feature of the SETAR model is its ability to generate “limit cycles”: if (11.7) is extrapolated assuming that the error terms equal zero, then the extrapolated series displays oscillations of a given length that do not die out.

As previously stated, asymmetry may be captured by the regimes: for example, if $x_{t-d}$ measures the phase of an economic business cycle, a tworegime SETAR could describe processes whose dynamic properties differ across expansions and recessions. If the transition variable $x_{t-d}$ is replaced by its difference $\nabla x_{t-d}$, then any asymmetry lies in the growth rate of the series so that, for example, increases in growth rates may be rapid but the return to a lower level of growth may be slow.

If the transition variable $x_{t-d}$ is replaced by $t$ then the model becomes an autoregression with $r \quad 1$ breaks at times $c_1, \ldots, c_{r-1}$.

## 统计代写|时间序列分析代写Time-Series Analysis代考|MARKOV-SWITCHING MODELS

11.21 Yet another way of introducing asymmetry is to consider “regime switching” models. Hamilton $(1989,1990)$, Engle and Hamilton (1990), and Lam (1990) all propose variants of a switching-regime Markov model, which can be regarded as a nonlinear extension of an ARMA process that can accommodate complicated dynamics, such as asymmetry and conditional heteroskedasticity. The setup is that of the UC model of $\S 8.1$. i.e.. Eq. (8.1), where $z_t$ now evolves as a two-state Markov process:
$$z_t=\alpha_0+\alpha_1 S_t$$
where
$$\begin{gathered} P\left(S_t=1 \mid S_{t-1}=1\right)=p \ P\left(S_t=0 \mid S_{t-1}=1\right)=1-p \ P\left(S_t=1 \mid S_{t-1}=0\right)=1-q \ P\left(S_t=0 \mid S_{t-1}=0\right)=q \end{gathered}$$
The noise component $u_t$ is assumed to follow an $\operatorname{AR}(r)$ process $\phi(B) u_t=\varepsilon_t$, where the innovation sequence $\varepsilon_t$ is strict white noise but $\phi(B)$ may contain a unit root, so that, unlike the conventional UC specification, $u_t$ can be nonstationary. In fact, a special case of the conventional UC model results when $p=1-q$. The random walk component then has an innovation restricted to be a two-point random variable, taking the values 0 and 1 with probabilities $q$ and $1-q$ respectively, rather than a zero-mean random variable drawn from a continuous distribution, such as the normal.
11.22 The stochastic process for $S_t$ is strictly stationary, having the $\operatorname{AR}(1)$ representation:
$$S_t=(1-q)+\lambda S_{t-1}+V_t$$

where $\lambda=p+q-1$ and where the innovation $V_t$ has the conditional probability distribution
\begin{aligned} &P\left(V_t=(1-p) \mid S_{t-1}=1\right)=p, \ &P\left(V_t=-p \mid S_{t-1}=1\right)=1-p, \ &P\left(V_t=-(1-q) \mid S_{t-1}=0\right)=q, \ &P\left(V_t=q \mid S_{t-1}=0\right)=1-q \end{aligned}
This innovation is uncorrelated with lagged values of $S_t$, since
$$E\left(V_t \mid S_{t-j}=1\right)=E\left(V_t \mid S_{t-j}=0\right)=0 \quad \text { for } j \geq 1$$
but it is not independent of such lagged values, as, for example,
\begin{aligned} &E\left(V_t^2 \mid S_{t-1}=1\right)=p(1-p) \ &E\left(V_t^2 \mid S_{t-1}=0\right)=q(1-q) \end{aligned}

# 时间序列分析代考

## 统计代写|时间序列分析代写时间序列分析代考|阈值和平滑过渡自回归

$$x_t=\sum_{j=1}^r\left(\phi_{j, 1} x_{t-1}+\cdots+\phi_{j, p} x_{t-p}+a_{j, t}\right) \mathbf{1}\left(c_{j-1}<x_{t-d} \leq c_j\right)$$

\begin{aligned} x_t=&\left(\phi_{1,1} x_{t-1}+\cdots+\phi_{1, p} x_{t-p}+a_{1, t}\right) \mathbf{1}\left(x_{t-d} \leq c_1\right) \ &+\left(\phi_{2,1} x_{t-1}+\cdots+\phi_{2, p} x_{t-p}+a_{2, t}\right)\left(1-\mathbf{1}\left(x_{t-d} \leq c_1\right)\right) \end{aligned}
SETAR模型的一个重要特征是它能够产生“极限环”:如果(11.7)外推，假设误差项等于零，那么外推的系列显示给定长度的振荡不消失

## 统计代写|时间序列分析代写时间序列分析代考|马尔可夫交换模型

$$z_t=\alpha_0+\alpha_1 S_t$$

$$\begin{gathered} P\left(S_t=1 \mid S_{t-1}=1\right)=p \ P\left(S_t=0 \mid S_{t-1}=1\right)=1-p \ P\left(S_t=1 \mid S_{t-1}=0\right)=1-q \ P\left(S_t=0 \mid S_{t-1}=0\right)=q \end{gathered}$$噪声成分$u_t$被假设遵循一个$\operatorname{AR}(r)$过程$\phi(B) u_t=\varepsilon_t$，其中创新序列$\varepsilon_t$是严格的白噪声，但$\phi(B)$可能包含一个单位根，因此，与传统的UC规范不同，$u_t$可以是非平稳的。事实上，传统UC模型的一个特例是$p=1-q$。随机游走组件有一个创新限制为两点随机变量，分别取概率为$q$和$1-q$的值0和1，而不是从连续分布中提取的零均值随机变量，如正态。
11.22 $S_t$的随机过程是严格平稳的，具有$\operatorname{AR}(1)$表示:
$$S_t=(1-q)+\lambda S_{t-1}+V_t$$

，其中$\lambda=p+q-1$和创新$V_t$具有条件概率分布
\begin{aligned} &P\left(V_t=(1-p) \mid S_{t-1}=1\right)=p, \ &P\left(V_t=-p \mid S_{t-1}=1\right)=1-p, \ &P\left(V_t=-(1-q) \mid S_{t-1}=0\right)=q, \ &P\left(V_t=q \mid S_{t-1}=0\right)=1-q \end{aligned}

$$E\left(V_t \mid S_{t-j}=1\right)=E\left(V_t \mid S_{t-j}=0\right)=0 \quad \text { for } j \geq 1$$
，但它不是独立于这些滞后值，例如，
\begin{aligned} &E\left(V_t^2 \mid S_{t-1}=1\right)=p(1-p) \ &E\left(V_t^2 \mid S_{t-1}=0\right)=q(1-q) \end{aligned}

## 有限元方法代写

tatistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

Days
Hours
Minutes
Seconds

# 15% OFF

## On All Tickets

Don’t hesitate and buy tickets today – All tickets are at a special price until 15.08.2021. Hope to see you there :)