统计代写|生存模型代写survival model代考|Actual Age Summary

Doug I. Jones

Doug I. Jones

Lorem ipsum dolor sit amet, cons the all tetur adiscing elit

如果你也在 怎样代写生存模型Survival Models这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。生存模型Survival Models在许多可用于分析事件时间数据的模型中,有4个是最突出的:Kaplan Meier模型、指数模型、Weibull模型和Cox比例风险模型。

生存模型Survival Models精算师和其他应用数学家使用预测人类或其他实体(有生命或无生命)生存模式的模型,并经常使用这些模型作为相当重要的财务计算的基础。具体来说,精算师使用这些模型来计算与个人人寿保险单、养老金计划和收入损失保险相关的财务价值。人口统计学家和其他社会科学家使用生存模型对该模型适用的人口的未来构成做出预测。

couryes-lab™ 为您的留学生涯保驾护航 在代写生存模型survival model方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写生存模型survival model代写方面经验极为丰富,各种代写生存模型survival model相关的作业也就用不着说。

统计代写|生存模型代写survival model代考|Actual Age Summary

统计代写|生存模型代写survival model代考|Actual Age Summary

Here we recapitulate the steps involved in processing basic data for the purpose of estimating $q_x$ (or a constant force of mortality) over the estimation interval $(x, x+1]$. We assume that the basic data for each person consists of the date of birth, date of joining the group under study (e.g., date of insurance policy issue), and date of death or withdrawal, if applicable. In addition, the opening and closing dates of the observation period (O.P.) must be specified. Actual ages are used.
(1) Any person whose death or withdrawal occurs before the O.P. opens, or whose date of joining the group occurs after the O.P. closes, is not part of the study sample.
(2) Dates of birth, joining the group, and death or withdrawal are converted to decimal years.
(3) Age at entry to study, $y_i$, is found as age when O.P. opens, or age when person $i$ joins group, whichever is later.
(4) Scheduled age at exit from study, $z_i$, is found as age on closing date of O.P.
(5) Age at death or withdrawal, $\theta_i$ or $\phi_i$, is found from date of event and date of birth; steps (3), (4) and (5) produce the age vector $\mathbf{v}i^{\prime}=\left[y_i, z_i, \theta_i, \phi_i\right]$. (6) The duration vector $u{i, x}^{\prime}=\left[r_i, s_i, \iota_i \kappa_i\right]$ is obtained from $\mathbf{v}i^{\prime}$ with respect to the estimation interval $(x, x+1]$. (7) The estimators presented in Chapters 6, 7 and 8 can then be evaluated from the $\mathbf{u}{i, x}$ vectors for all persons in the study.

统计代写|生存模型代写survival model代考|INSURING AGES

Since most people do not purchase individual insurance policies on their actual birthdays, it follows that they are various fractional attained ages when their policies are issued. The insurance company, on the other hand, will not calculate a premium for the policy that depends on the insured’s actual fractional age at issue. Instead an integral insuring age is substituted for the insured’s actual age as of the policy issue date. Most commonly this insuring age will be the insured’s actual age on the birthday nearest the policy issue date. In other words,
$$
I A=\text { Actual Age Nearest Birthday, }
$$
where $I A$ is the insuring age.
Less commonly, the insuring age could be taken as the actual age on the birthday preceding the policy issue date, in which case we say that $I A$ is the actual age last birthday. Note that the examples and exercises in this chapter all use the age nearest birthday basis.

Assigning an integral insuring age to the insured as of the policy issue date implies that a hypothetical date of birth, called the insuring date of birth, has been substituted for the actual date of birth. Clearly the month and day of this insuring date of birth are the same as the policy issue date. The hypothetical year of birth, called the valuation year of birth (VYB), is then found as
$$
V Y B=C Y I-I A
$$

where $C Y I$ is the calendar year of policy issue. It should be recognized that $V Y B$ will frequently be the same as $C Y B$, but it can also be one year earlier or one year later than $C Y B$.

统计代写|生存模型代写survival model代考|Actual Age Summary

生存模型代考

统计代写|生存模型代写survival model代考|Actual Age Summary

在这里,我们概述了处理基本数据的步骤,以便在估计区间$(x, x+1]$上估计$q_x$(或死亡率的恒定力)。我们假设每个人的基本数据包括出生日期、加入研究小组的日期(例如,保险单签发日期)以及死亡或退出的日期(如适用)。此外,还必须规定观察期的开始和结束日期。使用实际年龄。
(1)任何在op开放之前死亡或退出,或在op关闭之后加入小组的人,不属于研究样本的一部分。
(2)出生、加入团体、死亡或退出的日期转换为十进制年。
(3)入学年龄$y_i$为op开放时的年龄,或$i$入组时的年龄,以较晚者为准。
(4)退出学习时的预定年龄$z_i$以op截止日期的年龄为准
(5)死亡或退出时的年龄,$\theta_i$或$\phi_i$,从事件发生之日和出生之日算起;步骤(3)、(4)、(5)生成年龄向量$\mathbf{v}i^{\prime}=\left[y_i, z_i, \theta_i, \phi_i\right]$。(6)由$\mathbf{v}i^{\prime}$相对于估计区间$(x, x+1]$得到持续时间向量$u{i, x}^{\prime}=\left[r_i, s_i, \iota_i \kappa_i\right]$。(7)然后可以从研究中所有人的$\mathbf{u}{i, x}$向量中评估第6,7和8章中给出的估计量。

统计代写|生存模型代写survival model代考|INSURING AGES

由于大多数人不是在他们的实际生日购买个人保险,因此他们在保险单签发时都是不同的分数达到年龄。另一方面,保险公司不会根据被保险人的实际年龄来计算保单的保费。取而代之的是一个完整的保险年龄代替被保险人的实际年龄在保单签发日期。最常见的是,这个投保年龄将是被保险人在最接近保单签发日期的生日时的实际年龄。换句话说,
$$
I A=\text { Actual Age Nearest Birthday, }
$$
$I A$是保险年龄。
不太常见的情况是,保险年龄可以作为保单签发日期之前生日的实际年龄,在这种情况下,我们说$I A$是上次生日的实际年龄。请注意,本章中的示例和练习都使用最接近生日的年龄。

在保单签发日期为被保险人指定一个完整的保险年龄意味着一个假设的出生日期,称为保险出生日期,已经取代了实际出生日期。显然,本投保日期的出生月份和日期与保单签发日期相同。假设的出生年份,称为估值出生年(VYB),然后发现为
$$
V Y B=C Y I-I A
$$

其中$C Y I$为政策发布的日历年。应该认识到,$V Y B$经常会与$C Y B$相同,但也可能比$C Y B$早一年或晚一年。

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

Days
Hours
Minutes
Seconds

hurry up

15% OFF

On All Tickets

Don’t hesitate and buy tickets today – All tickets are at a special price until 15.08.2021. Hope to see you there :)