
统计代写|随机过程代写stochastic process代考|STAT7004
如果你也在 怎样代写随机过程stochastic process这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。
随机过程 用于表示在时间上发展的统计现象以及在处理这些现象时出现的理论模型,由于这些现象在许多领域都会遇到,因此这篇文章具有广泛的实际意义。
couryes-lab™ 为您的留学生涯保驾护航 在代写随机过程stochastic process方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写随机过程stochastic process代写方面经验极为丰富,各种代写随机过程stochastic process相关的作业也就用不着说。
我们提供的随机过程stochastic process及其相关学科的代写,服务范围广, 其中包括但不限于:
- Statistical Inference 统计推断
- Statistical Computing 统计计算
- Advanced Probability Theory 高等概率论
- Advanced Mathematical Statistics 高等数理统计学
- (Generalized) Linear Models 广义线性模型
- Statistical Machine Learning 统计机器学习
- Longitudinal Data Analysis 纵向数据分析
- Foundations of Data Science 数据科学基础

统计代写|随机过程代写stochastic process代考|Rolling Up Our Sleeves: Chaining in the Simplex
The bound (2.34) seems to be genuinely better than the bound ( $2.38$ ) because when going from (2.34) to (2.38) we have used the somewhat brutal inequality:
$$
\sup {t \in T} \sum{n \geq 0} 2^{n / 2} d\left(t, T_n\right) \leq \sum_{n \geq 0} 2^{n / 2} \sup {t \in T} d\left(t, T_n\right) . $$ The method leading to the bound (2.34) is probably the most important idea of this work. The fact that it appears now so naturally does not reflect the history of the subject, but rather that the proper approach is being used. When using this bound, we will choose the sets $T_n$ in order to minimize the right-hand side of (2.34) instead of choosing them as in (2.36). As we will demonstrate later, this provides essentially the best possible bound for $\mathrm{Esup}{t \in T} X_t$. It is remarkable that despite the fact that this result holds in complete generality, it is a non-trivial task to find sets $T_n$ witnessing this, even in very simple situations. In the present situation, we perform this task by an explicit construction for the set $T$ of (2.49).
Proposition 2.6.1 There exist sets $T_n \subset \mathbb{R}^m$ with card $T_n \leq N_n$ such that
$$
\sup {t \in T} \sum{n \geq 0} 2^{n / 2} d\left(t, T_n\right) \leq L \sqrt{\log m}\left(=L E \sup _{t \in T} X_t\right) .
$$
Of course here $d$ is the Euclidean distance in $\mathbb{R}^m$. The reader may try to find these sets herself before reading the rest of this section, as there seems to be no better way to get convinced of the depth of the present theory. The sets $T_n$ are not subsets of $T$. Please figure out by yourself how to correct this. ${ }^{12}$
Lemma 2.6.2 For each $t \in T$, we can find a sequence $(p(n, t)){n \geq 0}$ of integers $0 \leq p(n, t) \leq 2 n$ with the following properties: $$ \begin{gathered} \sum{n \geq 0} 2^{n-p(n, t)} \leq L, \
\forall n \geq 0, p(n+1, t) \leq p(n, t)+2, \
\text { card }\left{i \leq m ; t_i \geq 2^{-p(n, t)}\right}<2^n .
\end{gathered}
$$
统计代写|随机过程代写stochastic process代考|Admissible Sequences of Partitions
The idea behind the bound (2.34) admits a technically more convenient formulation. ${ }^{14}$
Definition 2.7.1 Given a set $T$, an admissible sequence is an increasing sequence $\left(\mathcal{A}n\right){n \geq 0}$ of partitions of $T$ such that card $\mathcal{A}_n \leq N_n$, i.e., card $\mathcal{A}_0=1$ and card $\mathcal{A}_n \leq$ $2^{2^n}$ for $n \geq 1$
By an increasing sequence of partitions, we mean that every set of $\mathcal{A}{n+1}$ is contained in a set of $\mathcal{A}_n$. Admissible sequences of partitions will be constructed recursively, by breaking each element $C$ of $\mathcal{A}_n$ into at most $N_n$ pieces, obtaining then a partition $\mathcal{A}{n+1}$ of $T$ consisting of at most $N_n^2 \leq N_{n+1}$ pieces.
Throughout the book, we denote by $A_n(t)$ the unique element of $\mathcal{A}_n$ which contains $t$. The double exponential in the definition of $N_n$ (see (2.29)) occurs simply since for our purposes the proper measure of the “size” of a partition $\mathcal{A}$ is $\log \operatorname{card} \mathcal{A}$. This double exponential ensures that “the size of the partition $\mathcal{A}_n$ doubles at every step”. This offers a number of technical advantages which will become clear gradually.
Theorem 2.7.2 (The Generic Chaining Bound) Under the increment condition (2.4) (and if $\mathrm{E} X_t=0$ for each $t$ ), then for each admissible sequence $\left(\mathcal{A}n\right)$ we have $$ \mathrm{E} \sup {t \in T} X_t \leq L \sup {t \in T} \sum{n \geq 0} 2^{n / 2} \Delta\left(A_n(t)\right) .
$$
Here as always, $\Delta\left(A_n(t)\right)$ denotes the diameter of $A_n(t)$ for $d$. One could think that (2.54) could be much worse than (2.34), but it will turn out that this is not the case when the sequence $\left(\mathcal{A}_n\right)$ is appropriately chosen.
Proof We may assume $T$ to be finite. We construct a subset $T_n$ of $T$ by taking exactly one point in each set $A$ of $\mathcal{A}_n$. Then for $t \in T$ and $n \geq 0$, we have $d\left(t, T_n\right) \leq$ $\Delta\left(A_n(t)\right)$ and the result follows from (2.34).

随机过程代考
统计代写|随机过程代写stochastic process代考|Rolling Up Our Sleeves: Chaining in the Simplex
界限 (2.34) 似乎真的比界限 (2.38) 因为当从 (2.34) 到 (2.38) 时,我们 使用了有点残酷的不等式:
$$
\sup t \in T \sum n \geq 02^{n / 2} d\left(t, T_n\right) \leq \sum_{n \geq 0} 2^{n / 2} \sup t \in T d\left(t, T_n\right)
$$
导致边界 (2.34) 的方法可能是这项工作中最重要的想法。它现在如此 自然地出现的事实并不反映该主题的历史,而是正在使用正确的方 法。使用此界限时,我们将选择集合 $T_n$ 为了最小化 (2.34) 的右侧而不 是像 (2.36) 那样选择它们。正如我们稍后将展示的那样,这基本上为 $\operatorname{Esup} t \in T X_t$. 值得注意的是,尽管这个结果具有完全的普遍性,但 找到集合是一项不平凡的任务 $T_n$ 见证这一点,即使是在非常简单的情 况下。在目前的情况下,我们通过对集合的显式构造来执行此任务 $T$ 的 (2.49)。
命题 2.6.1 存在集合 $T_n \subset \mathbb{R}^m$ 带卡 $T_n \leq N_n$ 这样
$$
\sup t \in T \sum n \geq 02^{n / 2} d\left(t, T_n\right) \leq L \sqrt{\log m}\left(=L E \sup _{t \in T} X_t\right)
$$
当然在这里 $d$ 是欧氏距离 $\mathbb{R}^m$. 读者可以在阅读本节的其余部分之前尝 试自己找到这些集合,因为似乎没有更好的方法来确信当前理论的深 度。套装 $T_n$ 不是子集 $T$. 请自行弄清楚如何更正此问题。 12
引理 2.6.2 对于每个 $t \in T$ ,我们可以找到一个序列 $(p(n, t)) n \geq 0$ 整数的 $0 \leq p(n, t) \leq 2 n$ 具有以下属性.
统计代写|随机过程代写stochastic process代考|Admissible Sequences of Partitions
界限 (2.34) 背后的想法允许使用技术上更方便的公式。
定义 $2.7 .1$ 给定一个集合 $T$ ,一个可接受的序列是一个递增的序列 $(\mathcal{A} n) n \geq 0$ 分区的 $T$ 这样的卡 $\mathcal{A}n \leq N_n$ ,即卡片 $\mathcal{A}_0=1$ 和卡片 $\mathcal{A}_n \leq 2^{2^n}$ 为了 $n \geq 1$ 通过增加分区序列,我们的意思是每组 $\mathcal{A n}+1$ 包含在一组 $\mathcal{A}_n$. 允许 的分区序列将递归地构造,通过打破每个元嗉 $C$ 的 $\mathcal{A}_n$ 至多 $N_n$ 件,然 后获得一个分区 $\mathcal{A} n+1$ 的 $T$ 最多由 $N_n^2 \leq N{n+1}$ 件。
在整本书中,我们用 $A_n(t)$ 的独特元䋤 $\mathcal{A}_n$ 其中包含 $t$. 定义中的双指数 $N_n$ (见 (2.29) ) 发生只是因为为了我们的目的,分区”大小”的适当 度量 $\mathcal{A}$ 是 $\log \operatorname{card} \mathcal{A}$. 这个双指数确保 “分区的大小 $\mathcal{A}_n$ 每一步都加 倍”。这提供了许多技术优势,这些优势将逐渐变得清晰。
定理 $2.7 .2$ (通用链接边界) 在增量条件 (2.4) 下 (如果 $\mathrm{E} X_t=0$ 每 个t), 然后对于每个可接受的序列 $(\mathcal{A n})$ 我们有
$\operatorname{Esup} t \in T X_t \leq L \sup t \in T \sum n \geq 02^{n / 2} \Delta\left(A_n(t)\right)$
在这里,一如既往, $\Delta\left(A_n(t)\right)$ 表示直径 $A_n(t)$ 为了 $d$. 人们可能认为 (2.54) 可能比 (2.34) 差得多,但事实证明, 当序列出现时情况并非如 此 $\left(\mathcal{A}_n\right)$ 被适当地选择。
证明我们可以假设 $T$ 是有限的。我们构造一个子集 $T_n$ 的 $T$ 通过在每组 中只取一分 $A$ 的 $\mathcal{A}_n$. 然后为 $t \in T$ 和 $n \geq 0$ ,我们有 $d\left(t, T_n\right) \leq$ $\Delta\left(A_n(t)\right)$ 结果来自 (2.34)。

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。
金融工程代写
金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。
非参数统计代写
非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。
广义线性模型代考
广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。
术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。
有限元方法代写
有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。
有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。
tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。
随机分析代写
随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。
时间序列分析代写
随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。
回归分析代写
多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。
MATLAB代写
MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习和应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。
Post a Comment