统计代写|统计与机器学习作业代写Statistical and Machine Learning代考|ECE6254

Doug I. Jones

Doug I. Jones

Lorem ipsum dolor sit amet, cons the all tetur adiscing elit

如果你也在 怎样代写统计与机器学习Statistical and Machine Learning这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

统计学的目的是在样本的基础上对人群进行推断。机器学习被用来通过在数据中寻找模式来进行可重复的预测。

couryes-lab™ 为您的留学生涯保驾护航 在代写统计与机器学习Statistical and Machine Learning方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写统计与机器学习Statistical and Machine Learning方面经验极为丰富,各种代写机器学习Statistical and Machine Learning相关的作业也就用不着说。

我们提供的统计与机器学习Statistical and Machine Learning及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等楖率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
统计代写|统计与机器学习作业代写Statistical and Machine Learning代考|ECE6254

统计代写|统计与机器学习作业代写Statistical and Machine Learning代考|Decision Tree

Decision trees are statistical models designed for supervised prediction problems. Supervised prediction encompasses predictive modeling, pattern recognition, discriminant analysis, multivariate function estimation, and supervised machine learning. A decision tree includes the following components:

  • An internal node is a test on an attribute.
  • A branch represents an outcome of the test, such as color=purple.
  • A leaf node represents a class label or class label distribution.
  • At each node, one attribute is chosen to split the training data into distinct classes as much as possible.
  • A new instance is classified by following a matching path to a leaf node.
    The model is called a decision tree because the model can be represented in a tree-like structure. A decision tree is read from the top down starting at the root node. Each internal node represents a split based on the values of one of the inputs. The inputs can appear in any number of splits throughout the tree. Cases move down the branch that contains its input value. In a binary tree with interval inputs, each internal node is a simple inequality. A case moves left if the inequality is true and right otherwise. The terminal nodes of the tree are called leaves. The leaves represent the predicted target. All cases reaching a leaf are given the same predicted value. The leaves give the predicted class as well as the probability of class membership.

Decision trees can also have multi-way splits where the values of the inputs are partitioned into disjoint ranges.
When the target is categorical, the model is called a classification tree. A classification tree can be thought of as defining several multivariate step functions. Each function corresponds to the posterior probability of a target class. When the target is continuous, the model is a called a regression tree. The leaves give the predicted value of the target. All cases that reach a leaf are assigned the same predicted value. Cases are scored using prediction rules. These prediction rules define the regions of the input space in which the predictions are made. Each prediction rule tries to make the region of the input space purer with regard to the target response value.
To illustrate decision trees using business data, a generic data set containing information about payment is used with a binary target of default. For simplicity, the input variables are:

  • Previous delay: the number of previous delays since the time analyzed.
  • Over billing: the billing amount difference, or the billing amount divided by average billing amount.
  • Aging: the time since the customer first started consuming products or services from the company.

统计代写|统计与机器学习作业代写Statistical and Machine Learning代考|Subscription Fraud

A business problem where decision tree models can be useful is subscription fraud. In telecommunications, subscription fraud is when a fraudster uses a stolen or a synthetic identity to acquire mobile devices and services with no intention to pay. In many countries, telecommunications regulations allow customers to remain insolvent for a period without getting their services blocked. This causes major financial damages to the companies. Subscription fraud in telecommunications can be even worse as the proceeds and services are sometimes used by organized crime and terrorist networks. The main goal of the model is to detect subscription fraud and to prevent intentional bad debts. Fraud analysts need to be careful when assessing the cases to avoid adversely impacting the customer journey for the genuine customers. Blocking genuine communication services by mistake is a genuine problem.
As shown in Figure 3.3, a usual framework involving fraud – either subscription fraud or usage fraud – consists of a customer relationship management (CRM) system to receive customers’ orders. These orders are evaluated by a credit system (it can be accomplished using a credit bureau). In parallel, these orders can also be analyzed by a subscription fraud system, which normally receives information about past customers’ transactions. For example, in telecommunications, all raw transactions (calls or even calls attempted) are fetched by the collection systems. This system sends all transactions to a mediation system to aggregate all information and filter the billable transactions. These billable transactions are sent to the billing systems, which process the bills and charge the customers. All this information, in different levels, are used to evaluate and detect subscription and usage fraud. Historical customer information and transaction information are gathered in the data warehouse, which provides the data needed by the data mining tool, environment, or system to train, evaluate, and deploy the predictive models.When a service order is placed in the call center (CRM), the service representative must decide in a matter of seconds whether the request is a fraudulent event or a genuine request. This can be accomplished using decision tree models that recognize patterns associated with subscription fraud. Some of the information used could include stolen identities, fake addresses, specific payment methods, and known blocked lists. The models are used to compute the probability of subscription fraud, and these scores are relayed to the service representative. With this information, the service representative can decide whether this is subscription fraud or a genuine customer. As the decision tree models are fit because of a set of rules based on thresholds, some of the rules that are the most correlated to the subscription fraud can be communicated to the representative when evaluating the case. The list of rules generated by the decision tree is especially useful to the service representative during the customer call but also to the team of fraud analysts when analyzing the cases afterward. Some of the high probability subscription fraud cases might go through during the customer service call, but fraud analysts can evaluate cases afterward to decide what actions to take on some of the orders.

统计代写|统计与机器学习作业代写Statistical and Machine Learning代考|ECE6254

统计与机器学习代考

统计代写|统计与机器学习作业代写统计与机器学习代考|决策树


决策树是为监督预测问题设计的统计模型。监督预测包括预测建模、模式识别、判别分析、多元函数估计和监督机器学习。决策树包括以下组件:

  • 内部节点是对属性的测试。分支表示测试的结果,如color=purple。
  • 叶节点表示一个类标签或类标签分布。
  • 在每个节点上选择一个属性,尽可能地将训练数据划分为不同的类。
  • 新实例按照匹配路径到叶节点进行分类。该模型被称为决策树,因为该模型可以用树状结构表示。从根节点开始从上到下读取决策树。每个内部节点表示基于一个输入值的分割。输入可以出现在整个树的任意数量的分段中。case向下移动包含其输入值的分支。在具有区间输入的二叉树中,每个内部节点都是一个简单的不等式。如果不等式成立,则情况向左移动,反之则向右移动。树的终端节点称为叶。叶子代表预测的目标。所有到达叶的情况都给出相同的预测值。叶子给出了预测的类以及类成员的概率。


决策树也可以有多路分割,其中输入的值被分割成不相交的范围。
当目标是分类的,该模型称为分类树。一个分类树可以被认为是定义了几个多元步骤函数。每个函数对应目标类的后验概率。当目标是连续的,模型称为回归树。叶子给出目标的预测值。所有到达叶的情况都被分配相同的预测值。使用预测规则对案例进行评分。这些预测规则定义了进行预测的输入空间的区域。每个预测规则都试图使输入空间的区域相对于目标响应值更加纯净。为了使用业务数据演示决策树,使用了包含支付信息的通用数据集,并使用了一个二叉目标default。为简单起见,输入变量为:

  • 先前延迟:自分析时间以来的先前延迟次数。
  • 过计费:计费金额差额,即计费金额除以平均计费金额。
  • 老化:从客户开始消费公司的产品或服务的时间
    统计代写|统计与机器学习作业代写统计和机器学习代考|订阅欺诈
    决策树模型可以发挥作用的一个业务问题是订阅欺诈。在电信领域,订阅欺诈是指骗子使用窃取的或合成的身份获取移动设备和服务,但无意付费。在许多国家,电信条例允许客户在一段时间内保持资不偿清的状态,而不会使他们的服务受阻。这给这些公司造成了重大的经济损失。电信行业的订阅欺诈可能更严重,因为收益和服务有时被有组织犯罪和恐怖主义网络利用。该模型的主要目标是发现认购欺诈和防止故意坏账。欺诈分析师在评估案例时需要谨慎,以避免对真正客户的客户旅程产生不利影响。错误地阻止真正的通信服务是一个真正的问题。如图3.3所示,一个涉及欺诈(订阅欺诈或使用欺诈)的通常框架由一个客户关系管理(CRM)系统组成,用于接收客户的订单。这些订单由信用系统进行评估(可以使用信用局完成)。与此同时,这些订单也可以通过订阅欺诈系统进行分析,该系统通常会接收过去客户的交易信息。例如,在电信中,所有原始事务(调用或尝试的调用)都由收集系统获取。该系统将所有事务发送到中介系统,以聚合所有信息并过滤可计费事务。这些可计费的事务被发送到账单系统,该系统处理账单并向客户收费。所有这些不同级别的信息都用于评估和检测订阅和使用欺诈。在数据仓库中收集历史客户信息和事务信息,数据仓库提供数据挖掘工具、环境或系统所需的数据,用于训练、评估和部署预测模型。当在呼叫中心(CRM)中放置服务订单时,服务代表必须在几秒钟内确定该请求是欺诈事件还是真实请求。这可以通过使用识别与订阅欺诈相关模式的决策树模型来实现。使用的一些信息可能包括被盗的身份、假地址、特定的支付方式和已知的屏蔽列表。这些模型用于计算订阅欺诈的概率,并将这些分数传递给服务代表。有了这些信息,服务代表就可以确定这是订阅欺诈还是真正的客户。由于决策树模型是适合的,因为有一组基于阈值的规则,因此在评估案例时,可以将一些与认购欺诈最相关的规则传达给代表。决策树生成的规则列表对服务代表在与客户通话期间非常有用,对欺诈分析团队在事后分析案例时也非常有用。一些高概率的订阅欺诈案例可能在客户服务电话期间发生,但欺诈分析师可以在事后评估案例,以决定对某些订单采取什么行动
统计代写|统计与机器学习作业代写Statistical and Machine Learning代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

Days
Hours
Minutes
Seconds

hurry up

15% OFF

On All Tickets

Don’t hesitate and buy tickets today – All tickets are at a special price until 15.08.2021. Hope to see you there :)