## 统计代写|回归分析作业代写Regression Analysis代考|STA321

2022年12月29日

couryes-lab™ 为您的留学生涯保驾护航 在代写回归分析Regression Analysis方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写回归分析Regression Analysis代写方面经验极为丰富，各种代写回归分析Regression Analysis相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• Advanced Probability Theory 高等楖率论
• Advanced Mathematical Statistics 高等数理统计学
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础
couryes™为您提供可以保分的包课服务

## 统计代写|回归分析作业代写Regression Analysis代考|Asymptotic Properties of Estimators of Parameters

Similar to Lemma $4.1$ the next lemma can be established.
Lemma 4.2 Let $\boldsymbol{S}1, \widehat{\boldsymbol{S}}_2, \widehat{\boldsymbol{S}}_3, \widehat{\boldsymbol{Q}}_1, \widehat{\boldsymbol{Q}}_2, \boldsymbol{Q}_1$ and $\boldsymbol{Q}_2$ be defined through Theorem $3.2$ and (3.13)-(3.16). Suppose that for large n, $r\left(\boldsymbol{C}_1\right) \leq k_1$, and that both $r\left(\boldsymbol{C}_1\right)-$ $r\left(\boldsymbol{C}_2\right)$ and $r\left(\boldsymbol{C}_2\right)-r\left(\boldsymbol{C}_3\right)$ are independent of $n$. Then, as $n \rightarrow \infty$, (i) $n^{-1} \boldsymbol{S}_1 \stackrel{P}{\rightarrow} \mathbf{\Sigma}, \quad n^{-1} \widehat{\boldsymbol{S}}_2 \stackrel{P}{\rightarrow} \mathbf{\Sigma}, \quad n^{-1} \widehat{\boldsymbol{S}}_3 \stackrel{P}{\rightarrow} \mathbf{\Sigma}$ (ii) $\widehat{\boldsymbol{Q}}_1 \stackrel{P}{\rightarrow} \boldsymbol{Q}_1, \quad \widehat{\boldsymbol{Q}}_2 \stackrel{P}{\rightarrow} \boldsymbol{Q}_2$ Proof Since the distribution for $\boldsymbol{S}$ (see Lemma 4.1) used in the BRM and the distribution for $S_1$ are the same, $n^{-1} S_1 \stackrel{P}{\rightarrow} \Sigma$ follows from Lemma 4.1, and this is also true for $\widehat{\boldsymbol{Q}}_1 \stackrel{P}{\rightarrow} \boldsymbol{Q}_1$. Then it is noted that $\widehat{\boldsymbol{Q}}_1^{\prime} \boldsymbol{A}_1=\mathbf{0}$, and hence $$\widehat{\boldsymbol{S}}_2=\boldsymbol{S}_1+\widehat{\boldsymbol{Q}}_1^{\prime}\left(\boldsymbol{X}-\boldsymbol{A}_1 \boldsymbol{B}_1 \boldsymbol{C}_1\right)\left(\boldsymbol{P}{C_1^{\prime}}-\boldsymbol{P}{C_2^{\prime}}\right)\left(\boldsymbol{X}-\boldsymbol{A}_1 \boldsymbol{B}_1 \boldsymbol{C}_1\right)^{\prime} \widehat{\boldsymbol{Q}}_1 .$$ From Appendix B, Theorem B.20 (vi) it follows that $$\left(\boldsymbol{X}-\boldsymbol{A}_1 \boldsymbol{B}_1 \boldsymbol{C}_1\right)\left(\boldsymbol{P}{C_1^{\prime}}-\boldsymbol{P}{C_2^{\prime}}\right)\left(\boldsymbol{X}-\boldsymbol{A}_1 \boldsymbol{B}_1 \boldsymbol{C}_1\right)^{\prime} \sim W_p\left(\boldsymbol{\Sigma}, r\left(\boldsymbol{C}_1\right)-r\left(\boldsymbol{C}_2\right)\right),$$ because $\left(\boldsymbol{A}_3 \boldsymbol{B}_3 \boldsymbol{C}_3+\boldsymbol{A}_2 \boldsymbol{B}_2 \boldsymbol{C}_2\right)\left(\boldsymbol{P}{C_1^{\prime}}-\boldsymbol{P}{C_2^{\prime}}\right)=\mathbf{0}$. It is assumed that $r\left(\boldsymbol{C}_1\right)-r\left(\boldsymbol{C}_2\right)$ is fixed for large $n$, which indeed implies that for large $n$ the Wishart distribution does not depend on the values of $n$. Hence, $$\frac{1}{n}\left(\boldsymbol{X}-\boldsymbol{A}_1 \boldsymbol{B}_1 \boldsymbol{C}_1\right)\left(\boldsymbol{P}{C_1^{\prime}}-\boldsymbol{P}_{C_2^{\prime}}\right)\left(\boldsymbol{X}-\boldsymbol{A}_1 \boldsymbol{B}_1 \boldsymbol{C}_1\right)^{\prime} \stackrel{P}{\rightarrow} 0,$$
which is precisely what is needed in the following. Thus, (4.43) yields $n^{-1}$ ( $\widehat{\boldsymbol{S}}_2-$ $\left.\boldsymbol{S}_1\right) \stackrel{P}{\rightarrow} \mathbf{0}$, and then $n^{-1} \widehat{\boldsymbol{S}}_2 \stackrel{P}{\rightarrow} \mathbf{\Sigma}$. Moreover, $\widehat{\boldsymbol{Q}}_2 \stackrel{P}{\rightarrow} \boldsymbol{Q}_2$ and then copying the above presentation one may show $n^{-1} \widehat{\boldsymbol{S}}_3 \stackrel{P}{\rightarrow} \boldsymbol{\Sigma}$.

## 统计代写|回归分析作业代写Regression Analysis代考|Moments of Estimators of Parameters

For the $B R M$, the distributions of the maximum likelihood estimators are difficult to find. In Theorem 3.2, the estimators for the $E B R M_B^3$ were given and one can see that the expressions are stochastically much more complicated than the estimators for the $B R M$. To understand the estimators, moments are useful quantities. For example, approximations of the distributions of the estimators have to take place, and in this book these approximations are based on moments. Before studying $\boldsymbol{K} \widehat{\boldsymbol{B}}i \boldsymbol{L}, i=1,2,3$, the estimated mean structure $\widehat{E[\boldsymbol{X}]}=\sum{i=1}^3 \boldsymbol{A}_i \widehat{\boldsymbol{B}}_i \boldsymbol{C}_i$ and $\widehat{\boldsymbol{\Sigma}}$ are treated. Thereafter, $D\left[\boldsymbol{K} \widehat{\boldsymbol{B}}_i \boldsymbol{L}\right], i=1,2,3$, is calculated. The ideas for calculating $D\left[\boldsymbol{K} \widehat{\boldsymbol{B}}_i \boldsymbol{L}\right]$ are very similar to the ones presented for obtaining $D[\widehat{\boldsymbol{E}[\boldsymbol{X}]}]$ and $E[\widehat{\boldsymbol{\Sigma}}]$. Some advice is appropriate here. The technical treatment in this section is complicated, although not very difficult. Readers less interested in details are recommended merely to study the results in the given theorems. Moreover, the presentation in different places is not complete due to computational lengthiness. Table $4.1$ includes definitions which are used throughout the section.

First it will be shown that in the $E B R M_B^3$, under the uniqueness conditions presented in Theorem 4.9, the maximum likelihood estimators of $\boldsymbol{K} \boldsymbol{B}i \boldsymbol{L}$ will be unbiased and then it follows that $\widehat{E[X]}=\sum{i=1}^m \boldsymbol{A}_i \widehat{\boldsymbol{B}}_i \boldsymbol{C}_i$ is also unbiased. In Theorem $3.2$ the maximum likelihood estimators $\widehat{\boldsymbol{B}}_i, i=1,2,3$, were presented. Since $\mathcal{C}\left(\boldsymbol{C}_3^{\prime}\right) \subseteq \mathcal{C}\left(\boldsymbol{C}_2^{\prime}\right) \subseteq \mathcal{C}\left(\boldsymbol{C}_1^{\prime}\right)$, the following facts, which are obtained from Appendix B, Theorem B.19 (ix) and (xi), will be utilized.

# 回归分析代写

## 有限元方法代写

tatistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。