## 数学代写|实分析作业代写Real analysis代考|MATH7400

2022年12月26日

couryes-lab™ 为您的留学生涯保驾护航 在代写实分析Real analysis方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写实分析Real analysis代写方面经验极为丰富，各种代写实分析Real analysis相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础
couryes™为您提供可以保分的包课服务

## 数学代写|实分析作业代写Real analysis代考|Infinite Series in Normed Spaces

We define infinite series in a normed space as follows.
Definition 1.2.6 (Convergent Series). Let $\left{x_n\right}_{n \in \mathbb{N}}$ be a sequence of vectors in a normed space $X$. We say that the series $\sum_{n=1}^{\infty} x_n$ converges and equals $x \in X$ if the partial sums $s_N=\sum_{n=1}^N x_n$ converge to $x$, i.e., if
$$\lim {N \rightarrow \infty}\left|x-s_N\right|=\lim {N \rightarrow \infty}\left|x-\sum_{n=1}^N x_n\right|=0 .$$
In this case, we write $x=\sum_{n=1}^{\infty} x_n$, and we also use the shorthands $x=\sum x_n$ or $x=\sum_n x_n$.

In order for an infinite series to converge in $X$, the norm of the difference between $x$ and the partial sum $s_N$ must converge to zero. If we wish to emphasize which norm we are referring to, we may write that $x=\sum x_n$ converges with respect to $|\cdot|$, or we may say that $x=\sum x_n$ converges in $X$.
If $\left{x_n\right}_{n \in \mathbb{N}}$ is a sequence of vectors in $X$, then $\left{\left|x_n\right|\right}_{n \in \mathbb{N}}$ is a sequence of real scalars. What connection, if any, is there between the convergence of the series $\sum x_n$ in $X$ (which is a series of vectors) and convergence of the series $\sum\left|x_n\right|$ (which is a series of scalars)? In order to address this, we introduce the following terminology.

Definition 1.2.7. Let $\left{x_n\right}_{n \in \mathbb{N}}$ be a sequence in a normed space $X$. We say that the series $\sum_{n=1}^n x_n$ is absolutely convergent if $\sum_{n=1}^n\left|x_n\right|<\infty$.

A convergent series need not converge absolutely. For example, consider $X=\mathbb{R}$ and $x_n=(-1)^n / n$. The alternating harmonic series $\sum_{n=1}^{\infty}(-1)^n / n$ converges, but the harmonic series $\sum_{n=1}^{\infty} 1 / n$ does not.

Also, a series that converges absolutely need not converge. One example in the incomplete space $X=C_c(\mathbb{R})$ is constructed in Problem 1.3.11. The next theorem states that if $X$ is complete then every absolutely convergent series in $X$ must converge. Moreover, the converse also holds: In any incomplete normed space there exists a series that converges absolutely yet does not converge, i.e., there exist vectors $x_n \in X$ such that $\sum\left|x_n\right|<\infty$ but $\sum x_n$ does not converge.

## 数学代写|实分析作业代写Real analysis代考|Equivalent Norms

A vector space $X$ can have many different norms. Some of these norms may be “comparable” in the following sense.

Definition 1.2.9 (Equivalent Norms). We say that two norms $|\cdot|_a$ and $|\cdot|_b$ on a vector space $X$ are are equivalent if there exist constants $C_1, C_2>0$ such that
$$C_1|x|_a \leq|x|_b \leq C_2|x|_a, \quad \text { for all } x \in X .$$
The reader should show that if two norms are equivalent, then they determine the same convergence criterion, i.e.,
$$\lim {n \rightarrow \infty}\left|x-x_n\right|_a=0 \Longleftrightarrow \lim {n \rightarrow \infty}\left|x-x_n\right|_b=0 .$$
Conversely, if equation (1.2) holds, then $|\cdot|_a$ and $|\cdot|_b$ are equivalent (for one proof of this, see [Heil18, Thm. 3.6.2]).

We have the following important fact for finite-dimensional spaces (see [Heil18, Thm. 3.7.2]).

Theorem 1.2.10. If $X$ is a finite-dimensional vector space, then any two norms on $X$ are equivalent. $\diamond$

One consequence of Theorem 1.2.10 is that all finite-dimensional subspaces of a normed space are closed (see [Heil18, Cor. 3.7.3]).

# 实分析代写

## 数学代写|实分析作业代写Real analysis代考|Infinite Series in Normed Spaces

Veft $\left{x_{-} n \backslash r i g h t\right}_{-}{n \backslash i n \backslash m a t h b b{N}}$ 是赋范空间中的向量

$$\lim N \rightarrow \infty\left|x-s_N\right|=\lim N \rightarrow \infty\left|x-\sum_{n=1}^N x_n\right|$$

$X$ ，然自 $\backslash$ left $\left{\backslash \text { left } \mid x_{-} n \backslash \text { right } \mid \backslash \text { right }\right}_{-}{n \backslash$ in $\backslash m a t h b b{N}}$

$\sum\left|x_n\right|$ (这是一系列标量) ? 为了解决这个问题，我们 引入了以下术语。

## 数学代写|实分析作业代写Real analysis代考|Equivalent Norms

$$C_1|x|_a \leq|x|_b \leq C_2|x|_a, \quad \text { for all } x \in X$$

$$\lim n \rightarrow \infty\left|x-x_n\right|_a=0 \Longleftrightarrow \lim n \rightarrow \infty\left|x-x_n\right|_b$$

## 有限元方法代写

tatistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。