## 数学代写|实分析作业代写Real analysis代考|MATH2350

2022年12月26日

couryes-lab™ 为您的留学生涯保驾护航 在代写实分析Real analysis方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写实分析Real analysis代写方面经验极为丰富，各种代写实分析Real analysis相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础
couryes™为您提供可以保分的包课服务

## 数学代写|实分析作业代写Real analysis代考|H¨older and Lipschitz Continuity

Sometimes we deal with functions that are “better than continuous” yet are “not quite differentiable.” The next definition gives one way to quantify behavior that lies between continuity and differentiability.

Definition 1.4.1 (Hölder and Lipschitz Continuous Functions). Let $I$ be an interval in the real line, and let $f: I \rightarrow \mathbb{C}$ be a function on $I$.
(a) We say that $f$ is Hölder continuous on I with exponent $\alpha>0$ if there exists a constant $K \geq 0$ such that
$$|f(x)-f(y)| \leq K|x-y|^\alpha, \quad \text { for all } x, y \in I .$$
(b) If $f$ is Hölder continuous with exponent $\alpha=1$, then we say that $f$ is Lipschitz continuous on $I$, or simply that $f$ is Lipschitz. That is, $f$ is Lipschitz if there exists a constant $K \geq 0$ such that
$$|f(x)-f(y)| \leq K|x-y|, \quad \text { for all } x, y \in I .$$
A number $K$ for which this holds is called a Lipschitz constant for $f$.
By using the Mean Value Theorem, we can see that any function $f: I \rightarrow \mathbb{C}$ that is differentiable everywhere on $I$ and has a bounded derivative $f^{\prime}$ is Lipschitz on $I$ (this is Problem 1.4.2). However, a Lipschitz function need not be differentiable at every point. For example, $f(x)=|x|$ is Lipschitz on $[-1,1]$ but it is not differentiable at $x=0$.

Lipschitz functions will appear frequently in the text. In Chapter 5 we will prove that every Lipschitz function on $[a, b]$ has bounded variation and is absolutely continuous. We will encounter Hölder continuous functions with exponents $\alpha<1$ less frequently. The Cantor-Lebesgue function, which will be introduced in Section 5.1, is one important example of a Hölder continuous function that is not Lipschitz.

## 数学代写|实分析作业代写Real analysis代考|Lebesgue Measure

We know how to determine the volume of cubes, rectangles, spheres, and some other special subsets of $\mathbb{R}^d$. Does every subset of $\mathbb{R}^d$ have a volume? We are tempted to believe that each set $E \subseteq \mathbb{R}^d$ can be assigned a unique “volume” or “measure” $|E|$ in such a way that the following properties hold:
(i) $0 \leq|E| \leq \infty$
(ii) the measure of the unit cube $Q=[0,1]^d$ is $|Q|=1$,
(iii) if $E_1, E_2, \ldots$ are finitely or countably many disjoint subsets of $\mathbb{R}^d$, then
$$\left|\bigcup_k E_k\right|=\sum_k\left|E_k\right|,$$
(iv) $|E+h|=|E|$ for all $h \in \mathbb{R}^d$.
We will prove in Section $2.4$ that there is no way to define $|E|$ so that all four conditions (i)-(iv) simultaneously hold for every set $E \subseteq \mathbb{R}^d$ ! (This turns out to be a consequence of the Axiom of Choice; see Theorem 2.4.4.) Even so, we will prove in this chapter that if we relax our goal of defining a volume for every subset of $\mathbb{R}^d$, then we can create a useful definition of measure that satisfies properties (i)-(iv) for a very large class of subsets of $\mathbb{R}^d$. This class of “good sets,” which we will call the measurable subsets of $\mathbb{R}^d$, includes almost every set that we ever encounter in practice. The “volume” $|E|$ that we will define is called the Lebesgue measure of the set $E$; we will show that it is well-defined and “nicely behaved” on the class of measurable subsets of $\mathbb{R}^d$.
The creation of Lebesgue measure is a two-step process, broadly outlined as follows. First, we start with a basic class of subsets of $\mathbb{R}^d$ that we know how we want to measure. There are several choices for this class, but perhaps the simplest is the collection of rectangular boxes (rectangular parallelepipeds) in $\mathbb{R}^d$. The volume of a rectangular box is just the product of the lengths of its sides. We attempt to extend the notion of volume to arbitrary subsets of $\mathbb{R}^d$ by covering them with rectangular boxes in all possible ways. For each set $E \subseteq \mathbb{R}^d$, this gives us a number $|E|_e$ that we call the exterior Lebesgue measure of $E$. Every subset of $\mathbb{R}^d$ has a uniquely defined exterior measure, and the function $|\cdot|_e$ satisfies properties (i), (ii), and (iv) from our list above for every set $E$. However, there exist disjoint sets $A$ and $B$ in $\mathbb{R}^d$ such that $|A \cup B|_e<|A|_e+|B|_e$ ! Thus exterior Lebesgue measure does not satisfy property (iii) for all choices of disjoint subsets of $\mathbb{R}^d$.

# 实分析代写

## 数学代写|实分析作业代写Real analysis代考|H¨older and Lipschitz Continuity

(a) 我们说 $f$ Hölder 在 I 上连续吗? $\alpha>0$ 如果存在常数 $K \geq 0$ 这样
$|f(x)-f(y)| \leq K|x-y|^\alpha, \quad$ for all $x, y \in I$.
(b) 如果 $f$ Hölder 是指数连续的吗 $\alpha=1$ ，那么我们说 $f$ Lipschitz 连续吗 $I$ ，或者简单地说 $f$ 是利普希茨。那是， $f$ 如果存在常数，则为 Lipschitz $K \geq 0$ 这样 $|f(x)-f(y)| \leq K|x-y|, \quad$ for all $x, y \in I$

Lipschitz 函数会在文中频繁出现。在第 5 章中，我们将 证明每个 Lipschitz 函数在 $[a, b]$ 具有有限的变化并且是 绝对连续的。我们会遇到带指数的 Hölder 连续函数 $\alpha<1$ 不太频繁。将在 $5.1$ 节中介绍的 Cantor-
Lebesgue 函数是非 Lipschitz 的 Hölder 连续函数的一 个重要示例。

## 数学代写|实分析作业代写Real analysis代考|Lebesgue Measure

(i) $0 \leq|E| \leq \infty$
(ii) 单位立方体的量度 $Q=[0,1]^d$ 是 $|Q|=1$ ，
(iii) 如果 $E_1, E_2, \ldots$ 是的有限个或可数个不相交的子集 $\mathbb{R}^d$, 然后
$$\left|\bigcup_k E_k\right|=\sum_k\left|E_k\right|,$$
(四) $|E+h|=|E|$ 对所有人 $h \in \mathbb{R}^d$.

## 有限元方法代写

tatistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。