如果你也在 怎样代写现代代数Modern Algebra 这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。现代代数Modern Algebra有时被称为代数结构或抽象代数,或者仅仅在高等数学的背景下被称为代数。虽然这个名字可能只是暗示了一种新的方式来表示微积分之前的代数,但实际上它比微积分更广泛、更深入。
现代代数Modern Algebra这门学科的思想和方法几乎渗透到现代数学的每一个部分。此外,没有一门学科更适合培养处理抽象概念的能力,即理解和处理问题或学科的基本要素。这包括阅读数学的能力,提出正确的问题,解决问题,运用演绎推理,以及写出正确、切中要害、清晰的数学。
couryes-lab™ 为您的留学生涯保驾护航 在代写现代代数Modern Algebra方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写现代代数Modern Algebra代写方面经验极为丰富,各种代写现代代数Modern Algebra相关的作业也就用不着说。
数学代写|现代代数代写Modern Algebra代考|Cyclic Groups
In the last section, a group $G$ was defined to be cyclic if there exists an element $a \in G$ such that $G=\langle a\rangle$. It may happen that there is more than one element $a \in G$ such that $G=\langle a\rangle$. For the additive group $\mathbf{Z}$, we have $\mathbf{Z}=\langle 1\rangle$ and also $\mathbf{Z}=\langle-1\rangle$, since any $n \in \mathbf{Z}$ can be written as $(-n)(-1)$. Here, $(-n)(-1)$ does not indicate a product but rather a multiple of -1 , as described in Section 3.2.
Generator
Any element $a$ of the group $G$ such that $G=\langle a\rangle$ is a generator of $G$.
If $a$ is a generator of a multiplicative group $G$, then $a^{-1}$ is also, since any element $x \in G$ can be written as
$$
x=a^n=\left(a^{-1}\right)^{-n}
$$
for some integer $n$, and $G=\langle a\rangle=\left\langle a^{-1}\right\rangle$. For the additive group $G$, if $a$ is a generator of $G$, then $-a$ is also, since any $x \in G$ can be written as
$$
x=n a=(-n)(-a)
$$
for some integer $n$, and $G=\langle a\rangle=\langle-a\rangle$.
Example 1 The additive group
$$
\mathbf{Z}_n={[0],[1], \ldots,[n-1]}
$$
is a cyclic group with generator [1], since any $[k]$ in $\mathbf{Z}_n$ can be written as
$$
[k]=k[1]
$$
where $k[1]$ indicates a multiple of [1] as described in Section 3.2. Elements other than [1] may also be generators. To illustrate this, consider the particular case
$$
\mathbf{Z}_6={[0],[1],[2],[3],[4],[5]} .
$$
The element [5] is also a generator of $\mathbf{Z}_6$ since [5] is the additive inverse of [1]. The following list shows how $\mathbf{Z}_6$ is generated by [5]-that is, how $\mathbf{Z}_6$ consists of multiples of [5].
$$
\begin{aligned}
& 1[5]=[5] \
& 2[5]=[5]+[5]=[4] \
& 3[5]=[5]+[5]+[5]=[3] \
& 4[5]=[2] \
& 5[5]=[1] \
& 6[5]=[0]
\end{aligned}
$$
The cyclic subgroups generated by the other elements of $\mathbf{Z}_6$ under addition are
$$
\begin{aligned}
& \langle[0]\rangle={[0]} \
& \langle[2]\rangle={[2],[4],[0]} \
& \langle[3]\rangle={[3],[0]} \
& \langle[4]\rangle={[4],[2],[0]}=\langle[2]\rangle .
\end{aligned}
$$
Thus [1] and [5] are the only elements that are generators of the entire group.
数学代写|现代代数代写Modern Algebra代考|Generators of a Finite Cyclic Group
Let $G=\langle a\rangle$ be a cyclic group of order $n$. Then $a^m$ is a generator of $G$ if and only if $m$ and $n$ are relatively prime.
$p \Leftarrow q$ Proof On the one hand, if $m$ is such that $m$ and $n$ are relatively prime, then $d=$ $(m, n)=1$, and $a^m$ is a generator of $G$ by Theorem 3.26.
$p \Rightarrow q \quad$ On the other hand, if $a^m$ is a generator of $G$, then $a=\left(a^m\right)^p$ for some integer $p$. By part b of Theorem 3.21, this implies that $1 \equiv m p(\bmod n)$. That is,
$$
1-m p=n q
$$
for some integer $q$. This gives
$$
1=m p+n q,
$$
and it follows from Theorem 2.12 that $(m, n)=1$.
The Euler phi-function $\phi(n)$ was defined for positive integers $n$ in Exercise 23 of Section 2.8 as follows: $\phi(n)$ is the number of positive integers $m$ such that $1 \leq m \leq n$ and $(m, n)=1$. It follows, from Theorems 3.21 and 3.28, that the cyclic group $\langle a\rangle$ of order $n$ has $\phi(n)$ distinct generators.
Example 9 Let $G=\langle a\rangle$ be a cyclic group of order 10. The positive integers less than 10 and relatively prime to 10 are $1,3,7$, and 9 . Therefore, all generators of $G$ are included in the list
$a, a^3, a^7$, and $a^9$, and $G$ has $\phi(10)=4$ distinct generators.
现代代数代考
数学代写|现代代数代写Modern Algebra代考|Cyclic Groups
在上一节中,如果存在一个元素$a \in G$使得$G=\langle a\rangle$,则将组$G$定义为循环的。它可能发生,有多个元素$a \in G$这样$G=\langle a\rangle$。对于加性组$\mathbf{Z}$,我们有$\mathbf{Z}=\langle 1\rangle$和$\mathbf{Z}=\langle-1\rangle$,因为任何$n \in \mathbf{Z}$都可以写成$(-n)(-1)$。这里,$(-n)(-1)$并不表示一个乘积,而是-1的倍数,如3.2节所述。
发电机
组$G$中的任何元素$a$,使得$G=\langle a\rangle$是$G$的生成器。
如果$a$是乘法组$G$的生成器,那么$a^{-1}$也是,因为任何元素$x \in G$都可以写成
$$
x=a^n=\left(a^{-1}\right)^{-n}
$$
对于某个整数$n$和$G=\langle a\rangle=\left\langle a^{-1}\right\rangle$。对于添加组$G$,如果$a$是$G$的生成器,那么$-a$也是,因为任何$x \in G$都可以写成
$$
x=n a=(-n)(-a)
$$
对于某个整数$n$和$G=\langle a\rangle=\langle-a\rangle$。
示例1添加组
$$
\mathbf{Z}_n={[0],[1], \ldots,[n-1]}
$$
是一个具有生成器[1]的循环群,因为$\mathbf{Z}_n$中的任何$[k]$都可以写成
$$
[k]=k[1]
$$
其中$k[1]$表示3.2节中描述的[1]的倍数。除[1]以外的元素也可以是生成器。为了说明这一点,考虑一个特殊的案例
$$
\mathbf{Z}_6={[0],[1],[2],[3],[4],[5]} .
$$
元素[5]也是$\mathbf{Z}_6$的生成器,因为[5]是[1]的加性逆。下面的列表显示了[5]如何生成$\mathbf{Z}_6$,也就是说,$\mathbf{Z}_6$是如何由[5]的倍数组成的。
$$
\begin{aligned}
& 1[5]=[5] \
& 2[5]=[5]+[5]=[4] \
& 3[5]=[5]+[5]+[5]=[3] \
& 4[5]=[2] \
& 5[5]=[1] \
& 6[5]=[0]
\end{aligned}
$$
$\mathbf{Z}_6$的其他元素在加法作用下生成的循环子群为
$$
\begin{aligned}
& \langle[0]\rangle={[0]} \
& \langle[2]\rangle={[2],[4],[0]} \
& \langle[3]\rangle={[3],[0]} \
& \langle[4]\rangle={[4],[2],[0]}=\langle[2]\rangle .
\end{aligned}
$$
因此,[1]和[5]是整个组的唯一生成元素。
数学代写|现代代数代写Modern Algebra代考|Generators of a Finite Cyclic Group
让 $G=\langle a\rangle$ 是有序的循环群 $n$. 然后 $a^m$ 是的生成器 $G$ 当且仅当 $m$ 和 $n$ 都是相对优质的。
$p \Leftarrow q$ 证据一方面,如果 $m$ 是这样的 $m$ 和 $n$ 是相对优质的吗 $d=$ $(m, n)=1$,和 $a^m$ 是的生成器 $G$ 根据定理3.26。
$p \Rightarrow q \quad$ 另一方面,如果 $a^m$ 是的生成器 $G$那么, $a=\left(a^m\right)^p$ 对于某个整数 $p$. 根据定理3.21的b部分,这意味着 $1 \equiv m p(\bmod n)$. 也就是说,
$$
1-m p=n q
$$
对于某个整数 $q$. 这给出了
$$
1=m p+n q,
$$
由定理2.12可知 $(m, n)=1$.
欧拉函数$\phi(n)$在第2.8节的练习23中为正整数$n$定义如下:$\phi(n)$是正整数的个数$m$,使得$1 \leq m \leq n$和$(m, n)=1$。由定理3.21和3.28可知,阶为$n$的循环群$\langle a\rangle$有$\phi(n)$个不同的生成器。
例9设$G=\langle a\rangle$为10阶的环群。小于10且相对质数为10的正整数为$1,3,7$和9。因此,列表中包含$G$的所有生成器
$a, a^3, a^7$和$a^9$, $G$有$\phi(10)=4$个不同的生成器。
统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。