数学代写|数学建模代写math modelling代考|MAT3104

Doug I. Jones

Lorem ipsum dolor sit amet, cons the all tetur adiscing elit

couryes-lab™ 为您的留学生涯保驾护航 在代写数学建模math modelling方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写数学建模math modelling代写方面经验极为丰富，各种代写数学建模math modelling相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础
couryes™为您提供可以保分的包课服务

数学代写|数学建模代写math modelling代考|Noncommutative Version

In Sects. 3.2.1-4, we describe MPKCs whose central maps are derived from polynomial maps over extension fields. Such constructions can be generalized to rings, not necessarily fields. In fact, there have been several MPKCs constructed on noncommutative rings $[54,103,109,110,112]$. However, we cannot recommend such constructions strongly since the following theorem is well-known (see e.g. [6]).
The Artin-Wedderburn theorem. A ring $\mathscr{R}$ is a semi-simple if and only if there exist integers $n_{1}, \ldots, n_{l} \geq 1$ and division rings $K_{1}, \ldots, K_{l}$ such that
$$\mathscr{R} \simeq \mathrm{M}{n{1}}\left(K_{1}\right) \oplus \cdots \oplus \mathrm{M}{n{l}}\left(K_{l}\right),$$
where $\mathrm{M}{n}(K)$ is the ring of $n \times n$ matrices of $K$-entries. Furthermore, due to Wedderburn’s theorem, we see that, if a semi-simple ring $\mathscr{R}$ is finite, then the rings $K{1}, \ldots, K_{l}$ are commutative. For example, let
$$\mathscr{R}:=\left{a_{1} \sigma_{1}+\cdots+a_{5} \sigma_{5} \mid a_{1}, \ldots, a_{5} \in k\right}$$ $\sigma_{4}:=\left(\begin{array}{cc}1 & 1 \ 1\end{array}\right), \sigma_{5}:=\left({ }{1}^{1} \begin{array}{c}1 \ 1\end{array}\right)$. Define $\delta{1}, \ldots, \delta_{5} \in \mathscr{R}$ by
where $\alpha \in \mathscr{R}$ satisfies $\alpha \neq 1, \alpha^{3}=1$. It is easy to see that the elements $\delta_{1}, \ldots, \delta_{5}$ have the following multiplicative relations.

数学代写|数学建模代写math modelling代考|ABC Encryption Scheme

In the $A B C$ (or Simple Matrix) encryption scheme proposed by Tao et al. [99], the central map $G$ is generated by products among three matrices $A, B, C$. It is generalized as follows. Let $n, m \geq 1$ be integers with $m:=2 n, \mathscr{R}$ a ring over $k$ with $[\mathscr{R}: k]=n$ and $\left{\xi_{1}, \ldots, \xi_{n}\right} \subset \mathscr{R}$ is a basis of $\mathscr{R}$ over $k$. Denote by $\phi: k^{n} \rightarrow \mathscr{R}, \phi_{2}:$ $k^{m} \rightarrow \mathscr{R}^{2}$ one-to-one maps, e.g. $\phi\left(x_{1}, \ldots, x_{n}\right)=x_{1} \xi_{1}+\cdots+x_{n} \xi_{n}$ and $\phi_{2}\left(y_{1}, \ldots\right.$, $\left.y_{m}\right)=\left(y_{1} \xi_{1}+\cdots+y_{n} \xi_{n}, y_{n+1} \xi_{1}+\cdots+y_{m} \xi_{n}\right)$ for $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m} \in k$, and $\mathscr{B}, \mathscr{C}: k^{n} \rightarrow k^{n}$ linear maps. For $x \in k^{n}$, put $A=A(x):=\phi(x), B=B(x):=$ $\phi(\mathscr{B}(x)), C=C(x):=\phi(\mathscr{C}(x)), E_{1}=E_{1}(x):=A \cdot B, E_{2}=E_{2}(x):=A \cdot C$ and $E(x):=\left(E_{1}(x), E_{2}(x)\right)$. The central map $G: k^{n} \rightarrow k^{m}$ is defined by
$$G:=\phi_{2}^{-1} \circ E \circ \phi .$$
For $Y_{1}, Y_{2} \in \mathscr{R}$, one finds $x \in k^{n}$ with $E_{1}(x)=Y_{1}$ and $E_{2}(x)=Y_{2}$ by solving a system of linear equations derived from $C(x)=B(x) Y_{1}^{-1} Y_{2}$ or $B(x)=C(x) Y_{2}^{-1} Y_{1}$.
It is easy to see that the original $\mathrm{ABC}$ encryption scheme [99] is just same to the case that $\mathscr{R}=\mathrm{M}_{r}(k)$ with $r^{2}=n$, and the extension field cancelation (EFC) [97] is essentially expressed as an $\mathrm{ABC}$ encryption scheme in the case that $\mathscr{R}$ is an $n$ extension field of $k$.

The decryption of this scheme is simple and quite efficient. However, the decryption fails when $A$ is not invertible. Especially, the probability of decryption failure for the original $\mathrm{ABC}$ encryption scheme [99] is about $q^{-1}$, which is not negligible. To reduce the probability of decryption failure, several arrangements have been proposed, e.g., taking $q$ large, using rectangular matrices instead of $A, B, C$ et al. [100], using a tensor type matrix as $S$ [88]. However, the security for such arrangements should be studied carefully. It was shown that the tensor type $S$ is a weak key [56].
For the security, it is known that the min-rank attack and the linearization attack are available on this encryption scheme. For the original $\mathrm{ABC}$ [99], the compleximore, Moody et al. [73] proposed another attack on this scheme with the complexity $O\left(q^{r+4}\right.$. (polyn.)). Then this encryption scheme (presently) has a sub-exponential time security of $n$. For EFC, it is known that the linearization attack can recover plaintexts easily. To prevent it, the authors of [97] recommended to use the minus and the projection of EFC. In [39], the cubic version of $\mathrm{ABC}$ was proposed; the polynomials in $A$ are quadratic and then those in $F, G$ are cubic. Though the security against the direct attack is improved, the security against the linearization attack is almost same to the original $\mathrm{ABC}$

数学建模代写

数学代写|数学建模代写math modelling代考|Noncommutative Version

$[54,103,109,110,112]$. 但是，我们不能强烈推荐这种结构，因为以下定理是众所周知的 (参见例如 [6])。

Artin-Wedderburn 定理。戒指 $\mathscr{R}$ 是半简单的当且仅当存在整数 $n_{1}, \ldots, n_{l} \geq 1$ 和分割环 $K_{1}, \ldots, K_{l}$ 这样
$$\mathscr{R} \simeq \operatorname{Mn} 1\left(K_{1}\right) \oplus \cdots \oplus \operatorname{Mnl}\left(K_{l}\right)$$

$$\sigma_{4}:=\left(\begin{array}{ll} 1 & 11 \end{array}\right), \sigma_{5}:=\left(1^{1} 11\right) \text {. 定义 } \delta 1, \ldots, \delta_{5} \in \mathscr{R} \text { 在 }$$

数学代写|数学建模代写math modelling代考|ABC Encryption Scheme

$\phi: k^{n} \rightarrow \mathscr{R}, \phi_{2}: k^{m} \rightarrow \mathscr{R}^{2}$ 一对一的映射，例如
$\phi\left(x_{1}, \ldots, x_{n}\right)=x_{1} \xi_{1}+\cdots+x_{n} \xi_{n}$ 和 $\phi_{2}\left(y_{1}, \ldots\right.$
$\left.y_{m}\right)=\left(y_{1} \xi_{1}+\cdots+y_{n} \xi_{n}, y_{n+1} \xi_{1}+\cdots+y_{m} \xi_{n}\right)$ 为了
$x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m} \in k$ ，和 $\mathscr{B}, \mathscr{C}: k^{n} \rightarrow k^{n}$ 线性地图。为了 $x \in k^{n}$ ，放 $A=A(x):=\phi(x), B=B(x):=$
$\phi(\mathscr{B}(x)), C=C(x):=\phi(\mathscr{C}(x)), E_{1}=E_{1}(x):=A \cdot B, E_{2}=E_{2}(x):=A \cdot C$ 和 $E(x):=\left(E_{1}(x), E_{2}(x)\right)$. 中央地图 $G: k^{n} \rightarrow k^{m}$ 定义为
$$G:=\phi_{2}^{-1} \circ E \circ \phi .$$

有限元方法代写

tatistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

Days
Hours
Minutes
Seconds

15% OFF

On All Tickets

Don’t hesitate and buy tickets today – All tickets are at a special price until 15.08.2021. Hope to see you there :)