如果你也在 怎样代写宏观经济学Macroeconomics这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。
宏观经济学,对国家或地区经济整体行为的研究。它关注的是了解整个经济的事件,如商品和服务的生产总量、失业水平和价格的一般行为。
couryes-lab™ 为您的留学生涯保驾护航 在代写宏观经济学Macroeconomics方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写宏观经济学Macroeconomics代写方面经验极为丰富,各种代写宏观经济学Macroeconomics相关的作业也就用不着说。
我们提供的宏观经济学Macroeconomics及其相关学科的代写,服务范围广, 其中包括但不限于:
- Statistical Inference 统计推断
- Statistical Computing 统计计算
- Advanced Probability Theory 高等概率论
- Advanced Mathematical Statistics 高等数理统计学
- (Generalized) Linear Models 广义线性模型
- Statistical Machine Learning 统计机器学习
- Longitudinal Data Analysis 纵向数据分析
- Foundations of Data Science 数据科学基础
经济代写|宏观经济学代写Macroeconomics代考|Le Corbeiller and the Early Reception of Relaxation
When preparing together the program of the first meeting of the Econometric Society scheduled to take place in Lausanne, Frisch and Divisia both agreed to ask Le Corbeiller to give a conference on relaxation oscillations. At that time, Le Corbeiller-who was a close friend of Divisi ${ }^{25}$ —-was already something of an expert of relaxation oscillations, ${ }^{26}$ and he agreed to meet the members of the nascent Econometric Society in Lausanne in 1931.
In his communication, Le Corbeiller (1933) introduced the economists to the engineer’s approach of the theory of oscillations, and considered the conditions for which different devices-a clock showing harmonic movements or a pile drivermay show self-sustained oscillations. Like Van der Pol and Hamburger, he started by considering the working of a simple pendulum. When frictions are negligible, Le Corbeiller noted that the movements will be described by a regular sinusoidal curve, and thus concluded that for a device like a pendulum to keep swinging, no energy must be dissipated. This required, in the presence of friction, that a source of energy should be added which may exactly compensate for the energy dissipated. In the case of a clock, this was made possible by the addition of weights which, as long as they had not gone down, maintained unchanged the swinging of the pendulum. Thus, contrary to Fisher, Le Corbeiller seriously considered the possibility that the escapement mechanism could be used as a useful model for economic fluctuations.
In a system of relaxation equations, Le Corbeiller argued that the problem was completely different. In that case, the system will keep oscillating precisely because the source of energy acting on it is periodically and suddenly dissipated (the “discharge”). This happened every time a device was characterized by a period of charge and a period of discharge of energy as it is the case for the Wimshurst machine ${ }^{27}$ or for a pile driver. In the latter case, a heavy mass is pulled up along a pile by a steam engine acting on a piston. Once it has reached a given height, a tap is opened which lets the steam escape and the mass falls on the head of the pile: “If therefore we consider on the one hand a clock, on the other hand a pile driver, we see that in both cases there is a source of energy which maintains a periodic movement by providing the energy dissipated during each period” (Le Corbeiller, 1933: 330).
In the second part of his presentation, Le Corbeiller focused on forced oscillations and considered the interaction between two systems, a small system $A$ and a large system $B$ assumed to oscillate sinusoidally. For instance, if an engine $(B)$ is placed on a table $(A)$, and the engine is doing $n$ turns per minute, then one may expect the table to vibrate with the frequency $n$. Now, if, due to its mass and the elasticity of its legs, the natural frequency of the table is equal to $n$, in accordance with the “well-known resonance phenomena,” (1933: 330) the table will oscillate with a great amplitude and may even break down after some time. If system $B$ is not only the engine but the whole electric plant producing energy, the oscillations will really be forced as the table does not react back on the plant. If, however, both systems are of the same size, “it is highly probable that the final movement of the whole system does not admit a unique period. We are therefore in a much more complicated case than that of forced oscillations” (1933: 331). But Le Corbeiller thought that the economy was precisely in this case, where different systems interacted and reacted together, which would be a problem “of extreme difficulty” (1933: 331).
经济代写|宏观经济学代写Macroeconomics代考|Coming (Almost) Full Circle
By a twist of fate, Le Corbeiller, who had not shown at first an overly enthusiastic interest for the use in economics of relaxation oscillations, was one of the crucial links between these early works and the revival of nonlinear limit cycle models in the 1950s. Indeed, while Le Corbeiller refrained from advocating for a specific approach in the early 1930s, he was the one who eventually allowed the path pioneered by Hamburger to be finally taken by Goodwin (1951). Goodwin, who had taught physics during the war, returned to economics at the end of the conflict and met Le Corbeiller, then a physicist at Harvard. Following his advice, as he made it clear in the opening pages of his article, he discovered the literature on relaxation oscillations: “My debt to Professor Le Corbeiller is very great, not only for the original stimulation to search for the essential nonlinearities, but also for his patient insistence, in the face of the many difficulties which turned up, that this type of analysis must somehow be worked out” (Goodwin, 1951: 2).
Goodwin placed himself in the context of the work of Hicks (1950) on the trade cycle, which hinged upon some nonlinearities, but also the work of Tinbergen, who had published during the war a paper working out the effects of high and low limits on an accelerator-multiplier model (Tinbergen, 1943) ${ }^{33}$ In this little known paper (translated in Tinbergen 1959), Tinbergen explored the implications of multiple equilibria in a Keynesian cross diagram and showed how, depending on the slope of the expenditure curve, different types of equilibrium could be defined. In fact, Tinbergen’s work was framed in the context of what he called “saturation,” an idea which he linked to Hamburger’s use of relaxation oscillation as a device limiting the amplitude of oscillations (Tinbergen, 1938: 34 , and Chaps. 5 and 6 below).
Two decades after Hamburger’s first paper, macroeconomics had now established itself as an autonomous field of research structured around various models. Nevertheless, the issues remained similar. Goodwin began his paper by reminding the reader of the “dilemma” between explosive or damped cycles shown by a linear model, rejecting the middle case of undamped fluctuations as a “classroom” solution without any economic content (Goodwin, 1951: 1). However, he pointed out two potential ways out of this dilemma, using external forces: the “synchronized systems” such as a clock and its escapement mechanism (a clear reference to Le Corbeiller’s own distinction), or the random impulses approach developed by Frisch after the debate on relaxation oscillations (1951: 2). Although Frisch’s approach had eclipsed the other way out, Goodwin put them back on the same level, and proposed to follow relaxation oscillations as a way out of the dilemma.
宏观经济学代考
经济代写|宏观经济学代写Macroeconomics代考|Le Corbeiller and the Early Reception of Relaxation
在共同准备计划于洛桑举行的计量经济学会第一次会议的议程时,Frisch 和 Divisia 都同意请 Le Corbeiller 召开一次关于松弛振荡的会议。当时,迪维西的密友勒·科尔贝勒 (Le Corbeiller)25—-已经是松弛振荡的专家了,26他同意于 1931 年在洛桑会见新生的计量经济学会的成员。
在他的交流中,Le Corbeiller (1933) 向经济学家介绍了振荡理论的工程师方法,并考虑了不同设备(显示谐波运动的时钟或打桩机)可能显示自持振荡的条件。像 Van der Pol 和 Hamburger 一样,他从考虑单摆的工作开始。当摩擦可以忽略不计时,Le Corbeiller 注意到运动将由规则的正弦曲线描述,因此得出结论,对于像钟摆这样的设备来说,要保持摆动,就不必耗散能量。在存在摩擦的情况下,这需要添加可以准确补偿能量耗散的能量源。就时钟而言,这是通过增加重量来实现的,只要重量没有下降,钟摆的摆动保持不变。因此,与 Fisher 不同,Le Corbeiller 认真考虑了将擒纵机构用作经济波动有用模型的可能性。
在松弛方程组中,Le Corbeiller 认为问题完全不同。在这种情况下,系统将精确地保持振荡,因为作用在它上面的能量源会周期性地突然消散(“放电”)。每当设备的特征在于一段时间的充电和一段时间的能量放电时,就会发生这种情况,就像 Wimshurst 机器的情况一样27或打桩机。在后一种情况下,通过作用在活塞上的蒸汽机将重物沿桩拉起。一旦它达到给定的高度,就会打开一个水龙头,让蒸汽逸出,质量落在桩头上:“因此,如果我们一方面考虑一个时钟,另一方面考虑一个打桩机,我们看到在这两种情况下,都有一种能量源通过提供每个周期消耗的能量来维持周期性运动”(Le Corbeiller,1933:330)。
在演讲的第二部分,Le Corbeiller 专注于受迫振荡并考虑了两个系统之间的相互作用,一个小系统A和一个大系统乙假设以正弦曲线振荡。例如,如果一个引擎(乙)放在桌子上(A),引擎正在做n每分钟转一圈,那么人们可能会期望桌子随着频率振动n. 现在,如果由于它的质量和腿的弹性,桌子的固有频率等于n,根据“众所周知的共振现象”(1933:330),桌子会大幅度振荡,一段时间后甚至会崩溃。如果系统乙不仅是发动机而且整个电厂都在产生能量,因为工作台不会对电厂产生反应,所以确实会强制振荡。然而,如果两个系统的大小相同,“很可能整个系统的最终运动不承认唯一的周期。因此,我们所处的情况比强迫振荡要复杂得多”(1933:331)。但勒·科贝勒认为,经济正是在这种情况下,不同的系统相互作用并共同作出反应,这将是一个“极其困难”的问题(1933:331)。
经济代写|宏观经济学代写Macroeconomics代考|Coming (Almost) Full Circle
机缘巧合,Le Corbeiller 一开始并没有对松弛振荡在经济学中的应用表现出过分热情的兴趣,但他却是这些早期著作与 1950 年代非线性极限环模型复兴之间的关键联系之一。事实上,虽然勒·科贝勒在 1930 年代初期没有提倡一种特定的方法,但他最终让古德温 (Goodwin,1951 年) 最终走上了汉堡开创的道路。战争期间教过物理学的古德温在冲突结束后回到经济学领域,并遇到了当时哈佛大学的物理学家勒科贝勒。按照他的建议,正如他在文章开篇明确指出的那样,他发现了关于松弛振荡的文献:“我非常感谢 Le Corbeiller 教授,
Goodwin 将自己置身于 Hicks (1950) 关于贸易周期的工作的背景下,这取决于一些非线性,还有 Tinbergen 的工作,他在战争期间发表了一篇论文,研究了高限和低限对贸易周期的影响加速器倍增器模型(Tinbergen,1943 年)33在这篇鲜为人知的论文(Tinbergen 1959 年译)中,Tinbergen 在凯恩斯交叉图中探讨了多重均衡的含义,并展示了如何根据支出曲线的斜率定义不同类型的均衡。事实上,Tinbergen 的工作是在他所谓的“饱和”的背景下进行的,他将这一想法与 Hamburger 使用张弛振荡作为限制振荡幅度的装置联系起来(Tinbergen,1938:34,以及第 5 章和第 6 章)以下)。
在 Hamburger 发表第一篇论文二十年后,宏观经济学现已成为一个围绕各种模型构建的自主研究领域。尽管如此,问题仍然相似。Goodwin 在他的论文一开始就提醒读者线性模型所显示的爆炸循环或阻尼循环之间的“困境”,拒绝将无阻尼波动的中间情况作为没有任何经济内容的“课堂”解决方案 (Goodwin, 1951: 1)。然而,他指出了两种可能的方法来摆脱这种困境,使用外力:“同步系统”,例如时钟及其擒纵机构(明确参考了 Le Corbeiller 自己的区分),或 Frisch 在之后开发的随机脉冲方法关于弛豫振荡的辩论 (1951: 2)。尽管 Frisch 的方法让其他出路黯然失色,
统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。
金融工程代写
金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。
非参数统计代写
非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。
广义线性模型代考
广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。
术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。
有限元方法代写
有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。
有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。
tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。
随机分析代写
随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。
时间序列分析代写
随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。
回归分析代写
多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。
MATLAB代写
MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习和应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。