## 数学代写|信息论作业代写information theory代考|A brief review of convex analysis

2023年4月10日

couryes-lab™ 为您的留学生涯保驾护航 在代写信息论information theory方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写信息论information theory代写方面经验极为丰富，各种代写信息论information theory相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• Advanced Probability Theory 高等概率论
• Advanced Mathematical Statistics 高等数理统计学
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础
couryes™为您提供可以保分的包课服务

## 数学代写|信息论作业代写information theory代考|A brief review of convex analysis

We recall some facts about the convex analysis that are relevant to development of quantum information theory below. Readers are referred to Rockafellar [131] for detailed accounts on convex analysis.

Let $\mathcal{A}$ be a subset of $\mathrm{X}$, where $\mathrm{X}$ is some locally convex Hausdorff topological space such as $\mathcal{S}(\mathrm{H})$ and $\mathcal{P}(\mathcal{S}(\mathbb{H})$ ) or all other spaces related to quantum information considered in this book.

Recall that $\mathcal{A} \subseteq X$ is said to be convex if for any $x, y \in \mathcal{A}$ then $p x+(1-p) y \in \mathcal{A}$ for all $p \in[0,1]$. For any $\mathcal{A} \subseteq X, \operatorname{co}(\mathcal{A})$ denotes the convex hull (i. e., the smallest convex set that contains $\mathcal{A}$ ) and $\overline{\operatorname{co}}(\mathcal{A})$ is the closed convex hull (i. e., the smallest closed convex set that contains $\mathcal{A}$ ). For any $x, y, z \in \mathcal{A}$, we say that $z$ lies between $x$ and $y$ if $x \neq y$ and there exists a $0<p<1$ such that $z=p x+(1-p) y . z \in \mathcal{A}$ is said to be an extreme point of $\mathcal{A}$ if it does not lie between any two distinct points of $\mathcal{A}$. That is, if there does not exist $x, y \in \mathcal{A}$ and $0<p<1$ such that $x \neq y$ and $z=p x+(1-p) y$. The set of all extreme points of $\mathcal{A}$ is denoted by $\operatorname{extr}(\mathcal{A})$.

We have the following theorem regarding a convex and compact set $\mathcal{A} \subseteq \mathrm{X}$. Its proof can be found in Rockafellar [131] and is therefore omitted.

Theorem 3.3.1 (Krein-Millman theorem). If $\mathcal{A} \subseteq \mathbb{X}$ is convex and compact, then $\mathcal{A}$ has extreme points. Furthermore, $\mathcal{A}$ is the closed convex hull of its extreme points $\operatorname{extr}(\mathcal{A})$, i. e., $\mathcal{A}=\overline{\mathrm{co}}(\operatorname{extr}(\mathcal{A}))$

Note that when $\mathcal{A}=\mathcal{S}(\mathbb{H})$ (the space of quantum states on $\mathbb{H})$, $\operatorname{extr}(\mathcal{S}(\mathbb{H})$ ) consists of all pure quantum states on the system represented by $\mathbb{H}$, since any pure state cannot be expressed as a nontrivial convex combination of any other quantum states by its definition.

## 数学代写|信息论作业代写information theory代考|Properties of barycenter

To define barycenter centers of a Borel probability measure on a closed set $\mathcal{A} \subseteq \mathcal{S}(\mathbb{H})$, we need to explore the concept of the Bochner integral. In mathematics, the Bochner integral, named for Salomon Bochner [13] extends the definition of Lebesgue integral to functions that take values in a Banach space, as the limit of integrals of simple functions.

The following definition (Definition 3.3.2) and proposition (Proposition 3.3.3) serve as an introduction to the construction and properties of Bochner integral for readers who are not familiar to them.

Definition 3.3.2. Let $(\mathrm{X} . \Sigma, \mu)$ be a measure space and let $\mathbb{B}$ be a complex Banach space under the Banach norm $|\cdot|_B$.

1. A function $f: \mathbb{X} \rightarrow \mathbb{B}$ is said to be $\Sigma$-measurable if $f^{-1}(B) \in \Sigma$ for all Borel subsets $B$ of $\mathbb{B}$, where
$$f^{-1}(B)={x \in \mathbb{X} \mid f(x) \in B}$$
2. A $\Sigma$-measurable function $f: X \rightarrow \mathbb{B}$ is said to be a simple function if it can be written as
$$f(x)=\sum_{i=1}^n 1_{E_1}(x) b_i$$
3. where $E_i \in \sum$ are disjoint sets, $b_i$ are distinct elements in $\mathbb{B}$ and $1_E$ is the characteristic function of the set $E \in \Sigma$ (i. e., $1_E(x)=1$ if $x \in E$ and $1_E(x)=0$ if $x \notin E$ ).
4. If $\mu\left(E_i\right)<+\infty$ for $b_i \neq 0$, then the simple function $f(x)=\sum_{i=1}^n 1_{E_i}(x) b_i$, is said to be Bochner integrable and its Bochner integral is defined to be
$$\int_{\mathbb{X}} f(x) \mu(d x)=\int_{\mathbb{X}}\left[\sum_{i=1}^n 1_{E_i}(x) b_i\right] \mu(d x)=\sum_{i=1}^n b_i \mu\left(E_i\right)$$

# 信息论代写

## 数学代写|信息论作业代写information theory代考|A brief review of convex analysis

Hausdorff 拓扑空间，例如 $\mathcal{S}(\mathrm{H})$ 和 $\mathcal{P}(\mathcal{S}(\mathbb{H}))$ ) 或本书中 考虑的与量子信息相关的所有其他空间。

## 数学代写|信息论作业代写information theory代考|Properties of barycenter

1. 一个功能 $f: \mathbb{X} \rightarrow \mathbb{B}$ 据说是 $\Sigma$-可测量的如果 $f^{-1}(B) \in \Sigma$ 对于所有 Borel 子集 $B$ 的 $\mathbb{B}$ ， 在哪 里
$$f^{-1}(B)=x \in \mathbb{X} \mid f(x) \in B$$
2. A $\Sigma$-可测量的功能 $f: X \rightarrow \mathbb{B}$ 如果可以写成，则 称其为简单函数
$$f(x)=\sum_{i=1}^n 1_{E_1}(x) b_i$$
3. 在哪里 $E_i \in \sum$ 是不相交的集合， $b_i$ 是不同的元 素 $\mathbb{B}$ 和 $1_E$ 是集合的特征函数 $E \in \Sigma$ (IE， $1_E(x)=1$ 如果 $x \in E$ 和 $1_E(x)=0$ 如果 $x \notin E)$.
4. 如果 $\mu\left(E_i\right)<+\infty$ 为了 $b_i \neq 0$ ，那么简单的函 数 $f(x)=\sum_{i=1}^n 1_{E_i}(x) b_i$ ， 被称为 Bochner 可 积，其 Bochner 积分定义为$\int_{\mathbb{X}} f(x) \mu(d x)=\int_{\mathbb{X}}\left[\sum_{i=1}^n 1_{E_i}(x) b_i\right] \mu(d x)$

## 有限元方法代写

tatistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。