
物理代写|广义相对论代写General relativity代考|KYA424
如果你也在 怎样代写广义相对论General relativity这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。
广义相对论是阿尔伯特-爱因斯坦在1907至1915年间提出的引力理论。广义相对论说,观察到的质量之间的引力效应是由它们对时空的扭曲造成的。
couryes-lab™ 为您的留学生涯保驾护航 在代写广义相对论General relativity方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写广义相对论General relativity代写方面经验极为丰富,各种代写广义相对论General relativity相关的作业也就用不着说。
我们提供的广义相对论General relativity及其相关学科的代写,服务范围广, 其中包括但不限于:
- Statistical Inference 统计推断
- Statistical Computing 统计计算
- Advanced Probability Theory 高等概率论
- Advanced Mathematical Statistics 高等数理统计学
- (Generalized) Linear Models 广义线性模型
- Statistical Machine Learning 统计机器学习
- Longitudinal Data Analysis 纵向数据分析
- Foundations of Data Science 数据科学基础

物理代写|广义相对论代写General relativity代考|Lie Derivatives and Killing’s Equation
The Lie derivative is a significant concept of differential geometry, named after the discovery by Sophus Lie in the late nineteenth century. It estimates the modification of a tensor field (containing scalar function, vector field), along the flow defined by an additional vector field. Lie derivative can be defined on any differentiable manifold as this change is coordinate invariant.
A vector field $X$ is a linear mapping from $C^{\infty}$ function to $C^{\infty}$ function on a manifold, satisfying
$$
\begin{gathered}
X(f g)=(X f) g+f X(g), \quad \forall f, g \in C^{\infty}(M) \
X(f)=\sum \frac{d x^\mu}{d v} \frac{\partial f}{\partial x^\mu}
\end{gathered}
$$
such that
$$
X=\sum a^\mu \frac{\partial}{\partial x^\mu} .
$$
Suppose $X^\mu(x)$ is a vector field defined over a manifold $M$. Trajectory of $X^\mu$ is obtained by solving
$$
\frac{d x^\mu}{d v}=X^\mu(x(v)) .
$$
Let us consider a coordinate transformation
$$
\bar{x}^\mu=\bar{x}^\mu\left(\epsilon, x^r\right),
$$
where $\epsilon$ is a parameter. This is known as one parameter set of transformation. This transformation designates a mapping of the spacetime onto itself. If the transformation takes the form
$$
\bar{x}^\mu=x^\mu+\epsilon \xi^\mu(x),
$$
then it is called infinitesimal one parameter transformation or infinitesimal mapping.
Here, $\xi^\mu(x)$ is a contravariant vector field defined by
$$
\xi^\mu(x)=\left.\frac{\partial \bar{x}^\mu}{\partial \epsilon}\right|_{\epsilon=0} .
$$
物理代写|广义相对论代写General relativity代考|Killing Equation
The structure of the metric tensor implies the structure of the spacetime.
Question: Does the metric tensor $g_{\mu v}$ change its value under the infinitesimal coordinate transformation
$$
\bar{x}^\mu=x^\mu+\epsilon \xi^\mu(x) ?
$$
To search the answer to this question, one has to check whether Lie derivative of $g_{\mu v}$ vanish or not. A mapping of the spacetime onto itself of the form
$$
\bar{x}^\mu=x^\mu+\epsilon \xi^\mu,
$$
[i.e., infinitesimal transformation] is known as isometric mapping if the Lie derivative of the metric tensor vanishes, i.e.,
$$
\begin{aligned}
& L_{\xi} g_{\mu v}=0, \
& \Rightarrow \
& \xi^\rho \nabla_\rho g_{\alpha \beta}+g_{\alpha v} \nabla_\beta \xi^v+g_{\mu \beta} \nabla_\alpha \xi^\mu=0, \
& \Rightarrow \
& \nabla_\beta \xi_\alpha+\nabla_\alpha \xi_\beta=0 \equiv A_{\alpha \beta} .
\end{aligned}
$$
The equation
$$
L_{\xi} g_{\mu v}=\nabla_\beta \xi_\alpha+\nabla_\alpha \xi_\beta=0
$$ is known as Killing equation. The solutions $\xi^\mu(x)$ of the Killing equation are termed as Killing vectors (KVs).
KV exist $\Rightarrow \exists$ solution of Killing equations $\Rightarrow$ presence of a definite intrinsic symmetry in that spacetime.
No solution of the Killing equation $\Rightarrow$ does not exist $\mathrm{KV} \Rightarrow$ the spacetime has no symmetry whatsoever.

广义相对论代考
物理代写|广义相对论代写General relativity代考|Lie Derivatives and Killing’s Equation
李导数是微分几何中一个重要的概念,以 Sophus Lie 在 19 世纪后期的发现命名。它估计张量场 (包含标量函 数、矢量场) 沿着由附加矢量场定义的流的修改。李导 数可以定义在任何可微㐬形上,因为这种变化是坐标不 变的。
向量场 $X$ 是一个线性映射 $C^{\infty}$ 作用于 $C^{\infty}$ 流形上的函 数,满足
$$
X(f g)=(X f) g+f X(g), \quad \forall f, g \in C^{\infty}(M) X(f)
$$
这样
$$
X=\sum a^\mu \frac{\partial}{\partial x^\mu} .
$$
认为 $X^\mu(x)$ 是在流形上定义的矢量场 $M$. 的轨迹 $X^\mu$ 通 过求解得到
$$
\frac{d x^\mu}{d v}=X^\mu(x(v)) .
$$
让我们考虑一个坐标变换
$$
\bar{x}^\mu=\bar{x}^\mu\left(\epsilon, x^r\right),
$$
在哪里 $\epsilon$ 是一个参数。这被称为转换的一个参数集。这种 转换指定了时空到自身的映射。如果转换采用以下形式
$$
\bar{x}^\mu=x^\mu+\epsilon \xi^\mu(x),
$$
则称为无穷小单参数变换或无穷小映射。
这里, $\xi^\mu(x)$ 是一个逆变向量场,定义为
$$
\xi^\mu(x)=\left.\frac{\partial \bar{x}^\mu}{\partial \epsilon}\right|_{\epsilon=0}
$$
物理代写|广义相对论代写General relativity代考|Killing Equation
度量张量的结构暗示了时空的结构。
问题: 度量张量 $g_{\mu v}$ 在无穷小坐标变换下改变它的值
$$
\bar{x}^\mu=x^\mu+\epsilon \xi^\mu(x) ?
$$
要寻找这个问题的答案,必须检查 Lie 导数是否 $g_{\mu v}$ 消失 与否。时空到形式自身的映射
$$
\bar{x}^\mu=x^\mu+\epsilon \xi^\mu,
$$
如果度量张量的李导数消失, 即无穷小变换被称为等距 映射,即,
$$
L_{\xi} g_{\mu v}=0, \quad \Rightarrow \xi^\rho \nabla_\rho g_{\alpha \beta}+g_{\alpha v} \nabla_\beta \xi^v+g_{\mu \beta} \nabla_\alpha \xi^\mu
$$
方程式
$$
L_{\xi} g_{\mu v}=\nabla_\beta \xi_\alpha+\nabla_\alpha \xi_\beta=0
$$
被称为杀死方程。解决方案 $\xi^\mu(x)$ Killing 方程的一部分 称为 Killing 向量 (KV)。
$\mathrm{KV}$ 存在 $\Rightarrow \exists$ 杀死方程的解 $\Rightarrow$ 在该时空中存在确定的内 在对称性。
Killing 方程无解 $\Rightarrow$ 不存在 $\mathrm{KV} \Rightarrow$ 时空没有任何对称性。

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。
金融工程代写
金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。
非参数统计代写
非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。
广义线性模型代考
广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。
术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。
有限元方法代写
有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。
有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。
tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。
随机分析代写
随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。
时间序列分析代写
随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。
回归分析代写
多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。
MATLAB代写
MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习和应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。
Post a Comment