如果你也在 怎样代写泛函分析functional analysis MA54600这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。泛函分析functional analysis的一个主要目标是研究标量变量理论在多大程度上可以扩展到在巴拿赫空间中取值的函数。
泛函分析functional analysis 是一门研究函数和函数空间的学科,它将经典分析技术与代数技术相结合。现代泛函分析是围绕用函数给出的解来求解方程的问题发展起来的。在18世纪研究了微分方程和偏微分方程之后,19世纪又研究了积分方程和其他类型的泛函方程,在这之后,人们需要发展一种新的分析方法,用无穷变量的函数来代替通常的函数。
couryes-lab™ 为您的留学生涯保驾护航 在代写泛函分析Functional Analysis方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写泛函分析Functional Analysis代写方面经验极为丰富,各种代写泛函分析Functional Analysis相关的作业也就用不着说。
数学代写|泛函分析作业代写Functional Analysis代考|Inner Product and Hilbert Spaces
Much of functional analysis involves abstracting and making precise ideas that have been developed and used over many decades, even centuries, in physics and classical mathematics. In this regard, functional analysis makes use of a great deal of “mathematical hindsight” in that it seeks to identify the most primitive features of elementary analysis, geometry, calculus, and the theory of equations in order to generalize them, to give them order and structure, and to define their interdependencies. In doing this, however, it simultaneously unifies this entire collection of ideas and extends them to new areas that could never have been completely explored within the framework of classical mathematics or physics.
The final abstraction we investigate in this book is of geometry: We add to the idea of vector spaces enough structure to include abstractions of the geometrical terms direction, orthogonality, angle between vectors, and length of a vector. Once these ideas are established, we have the framework for not only a geometry of function spaces but also a theory of linear equations, variational methods, approximation theory, and numerous other areas of mathematics.
We begin by recalling the definition of scalar product (comp. Section 2.14).
Scalar (Inner) Product. Let $V$ be a vector space defined over the complex number field $\boldsymbol{C}$. A scalarvalued function $p: V \times V \longrightarrow \mathbb{C}$ that associates with each pair $\boldsymbol{u}, \boldsymbol{v}$ of vectors in $V$ a scalar, denoted $p(\boldsymbol{u}, \boldsymbol{v})=(\boldsymbol{u}, \boldsymbol{v})$, is called a scalar (inner) product on $V$ iff
(i) $(\boldsymbol{u}, \boldsymbol{v})$ is linear with respect to the first argument
$$
\left(\alpha_1 \boldsymbol{u}_1+\alpha_2 \boldsymbol{u}_2, \boldsymbol{v}\right)=\alpha_1\left(\boldsymbol{u}_1, \boldsymbol{v}\right)+\alpha_2\left(\boldsymbol{u}_2, \boldsymbol{v}\right) \quad \forall \alpha_1, \alpha_2 \in \boldsymbol{C}, \quad \boldsymbol{u}_1, \boldsymbol{u}_2, \boldsymbol{v} \in V
$$
(ii) $(\boldsymbol{u}, \boldsymbol{v})$ is symmetric (in the complex sense)
$$
(\boldsymbol{u}, \boldsymbol{v})=\overline{(\boldsymbol{v}, \boldsymbol{u})}, \quad \forall \boldsymbol{u}, \boldsymbol{v} \in V
$$
(iii) $(\boldsymbol{u}, \boldsymbol{v})$ is positive definite, i.e.,
$$
(\boldsymbol{u}, \boldsymbol{u})>0 \quad \forall \boldsymbol{u} \neq \mathbf{0}, \boldsymbol{u} \in V
$$
Note that the first two conditions imply that $(\boldsymbol{u}, \boldsymbol{v})$ is antilinear with respect to the second argument
$$
\begin{aligned}
\left(\boldsymbol{u}, \beta_1 \boldsymbol{v}_1+\beta_2 \boldsymbol{v}_2\right) & =\overline{\left(\beta_1 \boldsymbol{v}_1+\beta_2 \boldsymbol{v}_2, \boldsymbol{u}\right)} \
& =\bar{\beta}_1 \overline{\left(\boldsymbol{v}_1, \boldsymbol{u}\right)}+\bar{\beta}_2 \overline{\left(\boldsymbol{v}_2, \boldsymbol{u}\right)} \
& =\bar{\beta}_1\left(\boldsymbol{u}, \boldsymbol{v}_1\right)+\bar{\beta}_2\left(\boldsymbol{u}, \boldsymbol{v}_2\right)
\end{aligned}
$$
for every $\beta_1, \beta_2 \in \boldsymbol{C}, \boldsymbol{v}_1, \boldsymbol{v}_2 \in V$.
In the case of a real vector space $V$, condition (ii) becomes one of symmetry
$$
(\boldsymbol{u}, \boldsymbol{v})=(\boldsymbol{v}, \boldsymbol{u}) \quad \forall \boldsymbol{u}, \boldsymbol{v} \in V
$$
and then $(\boldsymbol{u}, \boldsymbol{v})$ is linear with respect to both arguments $\boldsymbol{u}$ and $\boldsymbol{v}$. Note also that, according to the second condition,
$$
(\boldsymbol{u}, \boldsymbol{u})=\overline{(\boldsymbol{u}, \boldsymbol{u})}
$$
is a real number and therefore condition (iii) makes sense.
数学代写|泛函分析作业代写Functional Analysis代考|Orthogonality and Orthogonal Projections
Orthogonal Complements. Let $V$ be an inner product space and let $V^{\prime}$ be its topological dual. If $M$ is any subspace of $V$, recall that (see Section 5.16) we have defined the space
$$
M^{\perp} \stackrel{\text { def }}{=}\left{f \in V^{\prime}:\langle f, \boldsymbol{u}\rangle=0 \quad \forall \boldsymbol{u} \in M\right}
$$
as the orthogonal complement of $M$ with respect to the duality pairing $\langle\cdot, \cdot\rangle$.
Since $V$ is an inner product space, the inner product can be used to construct orthogonal subspaces of $V$ rather than its dual. In fact, we also refer to the space
$$
M_V^{\perp} \stackrel{\text { def }}{=}{\boldsymbol{v} \in V:(\boldsymbol{u}, \boldsymbol{v})=0 \quad \forall \boldsymbol{u} \in M}
$$
as the orthogonal complement of $M$ with respect to the inner product $(\cdot, \cdot)$.
The situation is really not as complicated as it may seem, because the two orthogonal complements $M^{\perp}$ and $M_V^{\perp}$ are algebraically and topologically equivalent. We shall take up this equivalence in some detail in the next section. In this section we shall investigate some fundamental properties of orthogonal complements with respect to the inner product $(\cdot, \cdot)$. Taking for a moment the equivalence of two notions for the orthogonal complements for granted, we shall denote the orthogonal complements $M_V^{\perp}$ simply as $M^{\perp}$.
泛函分析代写
数学代写|泛函分析作业代写Functional Analysis代考|Inner Product and Hilbert Spaces
许多功能分析涉及抽象和提出精确的概念,这些概念在物理学和古典数学中已经发展和使用了几十年,甚至几个世纪。在这方面,泛函分析利用了大量的“数学后见之明”,因为它试图识别初等分析、几何、微积分和方程理论的最原始特征,以便推广它们,赋予它们秩序和结构,并定义它们的相互依赖性。然而,在这样做的过程中,它同时统一了整个思想集合,并将它们扩展到经典数学或物理学框架内永远无法完全探索的新领域。
我们在本书中研究的最后一个抽象概念是几何:我们在向量空间的概念中加入了足够的结构,以包括几何术语方向、正交性、向量间的夹角和向量的长度的抽象。一旦这些思想建立起来,我们就不仅有了函数空间的几何框架,而且有了线性方程理论、变分方法、近似理论和许多其他数学领域的框架。
我们首先回顾标量积的定义(比较第2.14节)。
标量(内)积。设$V$是定义在复数域$\boldsymbol{C}$上的向量空间。标量值函数$p: V \times V \longrightarrow \mathbb{C}$与$V$中的每一对$\boldsymbol{u}, \boldsymbol{v}$向量相关联,表示为$p(\boldsymbol{u}, \boldsymbol{v})=(\boldsymbol{u}, \boldsymbol{v})$,称为$V$ iff上的标量(内)积
(i) $(\boldsymbol{u}, \boldsymbol{v})$相对于第一个参数是线性的
$$
\left(\alpha_1 \boldsymbol{u}_1+\alpha_2 \boldsymbol{u}_2, \boldsymbol{v}\right)=\alpha_1\left(\boldsymbol{u}_1, \boldsymbol{v}\right)+\alpha_2\left(\boldsymbol{u}_2, \boldsymbol{v}\right) \quad \forall \alpha_1, \alpha_2 \in \boldsymbol{C}, \quad \boldsymbol{u}_1, \boldsymbol{u}_2, \boldsymbol{v} \in V
$$
(ii) $(\boldsymbol{u}, \boldsymbol{v})$是对称的(在复杂意义上)
$$
(\boldsymbol{u}, \boldsymbol{v})=\overline{(\boldsymbol{v}, \boldsymbol{u})}, \quad \forall \boldsymbol{u}, \boldsymbol{v} \in V
$$
(iii) $(\boldsymbol{u}, \boldsymbol{v})$是肯定的,即
$$
(\boldsymbol{u}, \boldsymbol{u})>0 \quad \forall \boldsymbol{u} \neq \mathbf{0}, \boldsymbol{u} \in V
$$
注意,前两个条件意味着$(\boldsymbol{u}, \boldsymbol{v})$相对于第二个参数是反线性的
$$
\begin{aligned}
\left(\boldsymbol{u}, \beta_1 \boldsymbol{v}_1+\beta_2 \boldsymbol{v}_2\right) & =\overline{\left(\beta_1 \boldsymbol{v}_1+\beta_2 \boldsymbol{v}_2, \boldsymbol{u}\right)} \
& =\bar{\beta}_1 \overline{\left(\boldsymbol{v}_1, \boldsymbol{u}\right)}+\bar{\beta}_2 \overline{\left(\boldsymbol{v}_2, \boldsymbol{u}\right)} \
& =\bar{\beta}_1\left(\boldsymbol{u}, \boldsymbol{v}_1\right)+\bar{\beta}_2\left(\boldsymbol{u}, \boldsymbol{v}_2\right)
\end{aligned}
$$
对于每个$\beta_1, \beta_2 \in \boldsymbol{C}, \boldsymbol{v}_1, \boldsymbol{v}_2 \in V$。
在实向量空间$V$的情况下,条件(ii)成为对称条件
$$
(\boldsymbol{u}, \boldsymbol{v})=(\boldsymbol{v}, \boldsymbol{u}) \quad \forall \boldsymbol{u}, \boldsymbol{v} \in V
$$
然后$(\boldsymbol{u}, \boldsymbol{v})$对于$\boldsymbol{u}$和$\boldsymbol{v}$都是线性的。还要注意,根据第二个条件,
$$
(\boldsymbol{u}, \boldsymbol{u})=\overline{(\boldsymbol{u}, \boldsymbol{u})}
$$
是实数,因此条件(iii)是有意义的。
数学代写|泛函分析作业代写Functional Analysis代考|Orthogonality and Orthogonal Projections
正交补。设$V$为内积空间,$V^{\prime}$为其拓扑对偶。如果$M$是$V$的任何子空间,回想一下(参见5.16节)我们已经定义了这个空间
$$
M^{\perp} \stackrel{\text { def }}{=}\left{f \in V^{\prime}:\langle f, \boldsymbol{u}\rangle=0 \quad \forall \boldsymbol{u} \in M\right}
$$
作为$M$关于对偶对$\langle\cdot, \cdot\rangle$的正交补。
因为$V$是一个内积空间,所以内积可以用来构造$V$的正交子空间,而不是它的对偶。其实我们也指的是空间
$$
M_V^{\perp} \stackrel{\text { def }}{=}{\boldsymbol{v} \in V:(\boldsymbol{u}, \boldsymbol{v})=0 \quad \forall \boldsymbol{u} \in M}
$$
作为$M$关于内积$(\cdot, \cdot)$的正交补。
这种情况实际上并不像看起来那么复杂,因为两个正交补$M^{\perp}$和$M_V^{\perp}$在代数和拓扑上是等价的。我们将在下一节详细讨论这个等价。在本节中,我们将研究关于内积$(\cdot, \cdot)$的正交补的一些基本性质。暂时假定正交补的两个概念是等价的,我们将把正交补$M_V^{\perp}$简单地表示为$M^{\perp}$。
统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。
金融工程代写
金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。
非参数统计代写
非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。
广义线性模型代考
广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。
术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。
有限元方法代写
有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。
有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。
tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。
随机分析代写
随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。
时间序列分析代写
随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。
回归分析代写
多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。
MATLAB代写
MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习和应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。