# 数学代写|有限元方法代写Finite Element Method代考|ENEM28001

#### Doug I. Jones

Lorem ipsum dolor sit amet, cons the all tetur adiscing elit

couryes-lab™ 为您的留学生涯保驾护航 在代写有限元方法Finite Element Method方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写有限元方法Finite Element Method代写方面经验极为丰富，各种代写有限元方法Finite Element Method相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础
couryes™为您提供可以保分的包课服务

Consider a differential operator $\mathcal{L}$ and two arbitrary functions $u(x)$ and $v(x)$ with homogeneous end conditions, $u\left(x_0\right)=u\left(x_L\right)=0$ and $v\left(x_0\right)=v\left(x_L\right)=0$. The inner product of $u(x)$ with $\mathcal{L}(v)$ is defined as follows:
$$\langle u, \mathcal{L}(v)\rangle=\int_{x_0}^{x_L} u \mathcal{L}(v) d x$$
An adjoint differential operator $\mathcal{L}^$ satisfies the following relationship: $$\langle u, \mathcal{L}(v)\rangle=\left\langle v, \mathcal{L}^(u)\right\rangle$$

Consider the following second order differential equation with variable coefficients $a=a(x), b=b(x)$ and $c=c(x)$,
$$\mathcal{L}(u)=a \frac{d^2 u}{d x^2}+b \frac{d u}{d x}+c u=0 \text { in } x_0 \leq x \leq x_L$$
By using integration by parts and the end conditions stated above, it can be shown that the adjoint differential operator $\mathcal{L}^$ associated with $\mathcal{L}$ for Eq. (3.15) is given as follows [2], $$\mathcal{L}^(v)=\frac{d^2}{d x^2}(a v)-\frac{d}{d x}(b v)+c v$$
Differential operators for which the following condition holds,
$$\mathcal{L}^*=\mathcal{L}$$
By using Eqs. (3.15) and (3.16) it can be shown that a second order, linear differential equation is self-adjoint if and only if it is of the form [2].
$$\mathcal{L}(\cdot)=\frac{d}{d x}\left(a \frac{d(\cdot)}{d x}\right)+c(\cdot)$$
where (.) represents any arbitrary function of the type defined in this section. This differential operator is called the Sturm-Liouville differential operator.
Similarly, the following fourth order differential operator,
$$\mathcal{L}(\cdot)=\frac{d}{d x^2}\left(s \frac{d(\cdot)}{d x^2}\right)+\frac{d}{d x}\left(a \frac{d(\cdot)}{d x}\right)+c(\cdot)$$
where $a=a(x), c=c(x)$ and $s=s(x)$, is self-adjoint, if the boundary conditions are homogenous and of the form [2],
$$u=\frac{d u}{d x}=0 \text { or } u=s \frac{d^2 u}{d x^2}=0 \text { or } \frac{d u}{d x}=\frac{d}{d x}\left(s \frac{d^2 u}{d x^2}\right)=0$$
on the boundaries.

## 数学代写|有限元方法代写Finite Element Method代考|Variation of a functional

Consider the functional given in Eq. (3.21). Let’s assume first, that the values of the independent variable $u$ on the boundaries are given as,
$$u\left(x_0\right)=u_0 \text { and } u\left(x_L\right)=u_L$$
where $u_0$ and $u_L$ are prescribed values. Thus, we see that essential boundary conditions are specified on both ends of the domain. Recall that $I(u)$ is a scalar therefore its value between these points will depend on the function $u(x)$ or the chosen path between the end points (Fig. 3.2).

Let’s assume that a path $u(x)$ which extremizes the functional $I$ exists. We will see that this path, called the extremal path, is the function that represents the solution of the problem. Let’s also call all of the other paths between these points, $\tilde{u}(x)$, varied paths. In Fig. 3.2, we can see that the varied paths can be defined as follows:
$$\tilde{u}=u+\varepsilon v$$
where $\varepsilon$ is an arbitrarily small parameter and $v(x)$ is any differentiable function. The varied function $\tilde{u}$ and $v(x)$, should have the same values as the function $u$ at the end points. Thus we see that the varied function $v(x)$ should have the following property,
$$v\left(x_0\right)=0 \text { and } v\left(x_L\right)=0$$
In other words, $v(x)$ should satisfy the homogenous form of the essential boundary conditions.

The difference between the extremal path and one of the varied paths is defined as follows:
$$\delta u=\tilde{u}-u$$
By using Eq. (3.26), the variation of $u, \delta u$ can be found as follows:
$$\delta u=\tilde{u}-u=\varepsilon v$$
The function $\delta u=\delta u(x)$ represents the variation of $\tilde{u}(x)$ from $u(x)$. The symbol $\delta$ is called the del-operator or the variational operator. The variational operator represents variation of the function rather than a pointwise difference between the functions. Comparing Eqs. (3.29) with (3.27), we see that $\delta u(x)$ should have the same property (3.27) as $v(x)$. Thus the boundary conditions for the deloperator can be expressed as follows.

# 有限元方法代考

## 有限元方法代写

tatistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

Days
Hours
Minutes
Seconds

# 15% OFF

## On All Tickets

Don’t hesitate and buy tickets today – All tickets are at a special price until 15.08.2021. Hope to see you there :)