# 物理代写|电磁学代写electromagnetism代考|Cores with Hexagonal Cross-Sections

#### Doug I. Jones

Lorem ipsum dolor sit amet, cons the all tetur adiscing elit

couryes™为您提供可以保分的包课服务

couryes-lab™ 为您的留学生涯保驾护航 在代写电磁学electromagnetism方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写电磁学electromagnetism代写方面经验极为丰富，各种代写电磁学electromagnetism相关的作业也就用不着说。

## 物理代写|电磁学代写electromagnetism代考|Cores with Hexagonal Cross-Sections

Figure 5.7 shows a long solid-conducting core with a hexagonal cross-section having the length of each of its side $L$. This figure also shows another concentric hexagon with side length $\ell$, where
$$\ell=\sqrt{3} \cdot L$$
The smaller hexagon, indicating the core section, is provided with a uniformly distributed excitation winding carrying sinusoidal current at power frequency. This current-carrying winding is simulated by uniformly distributed currents flowing in the anticlockwise direction over the core surface with density $|K|$. Consequently, the axial component of the magnetic field $\mathrm{H}_z$ is established inside the core and is a negligible field outside. Because of eddy currents, $H_z$ will be nonuniform but symmetrically distributed over the core section. On the core surface, $H_z$ is given by Equation 5.60.

As shown in Figure 5.7, around this core section, the rectangle $a b c d$ is constructed. The width of this rectangle is $\ell$ and its height is $3 \mathrm{~L}$. We determine the solution for Equation 5.62 for $H_z^{\prime}$ using the following boundary conditions:
$$\left.H_z^{\prime}\right|_{x= \pm \ell / 2}=0$$

and
$$\left.H_z^{\prime}\right|{y= \pm \sqrt{3} \ell / 2}=\sum{m-o d d d}^{(2 M-1)} T_m \cdot \cos \left(\frac{m \pi}{\ell} \cdot x\right)$$
where $T_m$ indicates a set of Fourier coefficients in the expression for the torch function. Therefore,
$$H_z^{\prime}=\sum_{m-\text { add }}^{(2 M-1)} T_m \cdot \cos \left(\frac{m \pi}{\ell} \cdot x^{\prime}\right) \cdot \frac{\cosh \left(\beta_m \cdot y^{\prime}\right)}{\cosh \left(\beta_m \cdot L \cdot 3 / 2\right)}$$
where
$$\beta_m=\sqrt{\left(\frac{m \pi}{\ell}\right)^2+\eta^2}$$

## 物理代写|电磁学代写electromagnetism代考|Cores with Octagonal Cross-Sections

Consider a long conducting core with the cross-section in the shape of a regular octagon, and the length of each of its side is $L$ (vide Figure 5.8). On the surface of the core, there is a uniformly distributed winding carrying alternating current. The magnetic field in the octagonal core satisfies the following boundary condition:

$$\left.H_z\right|_{\text {core surface }}=K_o$$
where $K_o$ is the surface current density on the core surface simulating the winding current.

Around this core, imagine a larger octagon symmetrically placed with side length $\ell$, as shown in Figure 5.8. Joining the opposite sides of this octagon, construct rectangular regions. One of these four rectangles is labelled as $a b c d$. Let the torch function on the side $c d$ being an even function, be defined by the following finite Fourier series:
$$\left.H_z\right|{y=(\ell+L / 2)}=\left.H_z\right|{y=2914 L}=\sum_{m \text {-odd }}^M T_m \cdot \cos \left(\frac{m \pi}{\ell} \cdot x\right)$$
where
$$\ell=L+L \sqrt{2}$$
Since the magnetic field inside the core (or the target region) is an even function of $y$, the solution of the eddy current equation is obtained as
$$H_z^{(1)}=\sum_{m-\alpha d d}^{(2 M-1)} T_m \cdot \cos \left(\frac{m \pi}{\ell} \cdot x\right) \cdot \frac{\cosh \left(\tau_m \cdot y\right)}{\cosh \left(\tau_m \cdot 2.914 L\right)}$$
where
$$\tau_m=\sqrt{\left(\frac{m \pi}{\ell}\right)^2+\eta^2}$$

# 电磁学代考

## 物理代写|电磁学代写electromagnetism代考|Cores with Hexagonal Cross-Sections

$$\ell=\sqrt{3} \cdot L$$

$$\left.H_z^{\prime}\right|_{x= \pm \ell / 2}=0$$

$$\left.H_z^{\prime}\right|{y= \pm \sqrt{3} \ell / 2}=\sum{m-o d d d}^{(2 M-1)} T_m \cdot \cos \left(\frac{m \pi}{\ell} \cdot x\right)$$

$$H_z^{\prime}=\sum_{m-\text { add }}^{(2 M-1)} T_m \cdot \cos \left(\frac{m \pi}{\ell} \cdot x^{\prime}\right) \cdot \frac{\cosh \left(\beta_m \cdot y^{\prime}\right)}{\cosh \left(\beta_m \cdot L \cdot 3 / 2\right)}$$

$$\beta_m=\sqrt{\left(\frac{m \pi}{\ell}\right)^2+\eta^2}$$

## 物理代写|电磁学代写electromagnetism代考|Cores with Octagonal Cross-Sections

$$\left.H_z\right|_{\text {core surface }}=K_o$$

$$\left.H_z\right|{y=(\ell+L / 2)}=\left.H_z\right|{y=2914 L}=\sum_{m \text {-odd }}^M T_m \cdot \cos \left(\frac{m \pi}{\ell} \cdot x\right)$$

$$\ell=L+L \sqrt{2}$$

$$H_z^{(1)}=\sum_{m-\alpha d d}^{(2 M-1)} T_m \cdot \cos \left(\frac{m \pi}{\ell} \cdot x\right) \cdot \frac{\cosh \left(\tau_m \cdot y\right)}{\cosh \left(\tau_m \cdot 2.914 L\right)}$$

$$\tau_m=\sqrt{\left(\frac{m \pi}{\ell}\right)^2+\eta^2}$$

## 有限元方法代写

tatistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

Days
Hours
Minutes
Seconds

# 15% OFF

## On All Tickets

Don’t hesitate and buy tickets today – All tickets are at a special price until 15.08.2021. Hope to see you there :)