
数学代写|离散数学作业代写discrete mathematics代考|CS3653
如果你也在 怎样代写离散数学discrete mathematics这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。
离散数学是研究可以被认为是 “离散”(类似于离散变量,与自然数集有偏射)而不是 “连续”(类似于连续函数)的数学结构。离散数学研究的对象包括整数、图形和逻辑中的语句。相比之下,离散数学不包括 “连续数学 “中的课题,如实数、微积分或欧几里得几何。离散对象通常可以用整数来列举;更正式地说,离散数学被定性为处理可数集的数学分支(有限集或与自然数具有相同心数的集)。然而,”离散数学 “这一术语并没有确切的定义。
couryes-lab™ 为您的留学生涯保驾护航 在代写离散数学discrete mathematics方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写离散数学discrete mathematics代写方面经验极为丰富,各种代写离散数学discrete mathematics相关的作业也就用不着说。
我们提供的离散数学discrete mathematics及其相关学科的代写,服务范围广, 其中包括但不限于:
- Statistical Inference 统计推断
- Statistical Computing 统计计算
- Advanced Probability Theory 高等概率论
- Advanced Mathematical Statistics 高等数理统计学
- (Generalized) Linear Models 广义线性模型
- Statistical Machine Learning 统计机器学习
- Longitudinal Data Analysis 纵向数据分析
- Foundations of Data Science 数据科学基础

数学代写|离散数学作业代写discrete mathematics代考|The Gambler’s ruin
To conclude this chapter and as an introduction to problems in financial mathematics, let us look at a problem of ruin. A gambler has an initial capital $x$.
They toss for heads or tails using a balanced coin and win 1 if they obtain tails and loses 1 if they obtain heads. The gambler has a fixed objective of a fortune $a \geq x$ and a baseline for losing, $b \leq x$. They play until their fortune reaches $a$ or $b$.
The gambler’s fortune is modeled using a random walk $\left(S_n\right){n \in \mathbb{N}}$, with $S_0=x$ and $S_n=S_0+\sum{k=1}^n X_k$, where $X_k$ represents the winnings of the $k$-th toss.
It is known that arriving at $a$ or $b$, starting from $x$ is equivalent to arriving at $a-x$ or $b-x$ starting from 0 . The game then stops almost surely at the end of a finite time.
We use $p_x$ to denote the probability of ruin, starting from an initial capital of $x$, and $R_x$ to denote the event ruined after starting from $x$, that is,
$$
p_x=\mathbb{P}\left(T_b<T_a\right)=\mathbb{P}\left(R_x\right) .
$$
It can be directly noted that $p_a=0$ and $p_b=1$ because in both these situations the game does not start; ruin is impossible in the first case and is certain in the second.
We will now obtain a recurrence over $p_x$. If $b<x<a$, then using the formula for total probabilities, we have
$$
\begin{aligned}
p_x & =\mathbb{P}\left(R_x\right) \
& =\mathbb{P}\left(R_x, \mid S_1=x+1\right) \mathbb{P}\left(S_1=x+1\right)+\mathbb{P}\left(R_x \mid S_1=x-1\right) \mathbb{P}\left(S_1=x-1\right) \
& =\mathbb{P}\left(R_{x+1}\right) \frac{1}{2}+\mathbb{P}\left(R_{x-1}\right) \frac{1}{2},
\end{aligned}
$$
by using stationarity.
数学代写|离散数学作业代写discrete mathematics代考|Martingale transform
THEOREM 4.1.-Let $\left(K_n\right){n \in \mathbb{N}}$ be a positive and $\left(\mathcal{F}_n\right){n \in \mathbb{N}}$ be a predictable process. Consider $\left(X_n\right){n \in \mathbb{N}}$ an $\left(\mathcal{F}_n\right){n \in \mathbb{N}}$-martingale [respectively submartingale, supermartingale ]. If the process $\left(K_n\right){n \in \mathbb{N}}$ is bounded, then the process $\left(K \cdot X_n\right){n \in \mathbb{N}}$, defined by $K \cdot X_0=X_0$ and for any $n \geq 1$,
$$
K \cdot X_n:=\sum_{k=1}^n K_k\left(X_k-X_{k-1}\right),
$$
is an $\left(\mathcal{F}n\right){n \in \mathbb{N}}-$ martingale [respectively submartingale, supermartingale]. The process $\left(K \cdot X_n\right){n \in \mathbb{N}}$ is called a martingale transform of $\left(X_n\right)$. $K \cdot X_n:=\sum{k=1}^n K_k\left(X_k-X_{k-1}\right)$, is clearly $\mathcal{F}n$-measurable. On the contrary, because $\left(K_n\right)$ is bounded, there exists $M>0$ such that $$ \mathbb{E}\left[\left|K \cdot X_n\right|\right] \leq M \sum{k=1}^n \mathbb{E}\left[\left|X_k-X_{k-1}\right|\right]<\infty,
$$
because $\left(X_n\right)$ is an integrable.
Finally, for any $n \geq 1$, upon simplification we obtain:
$$
\begin{aligned}
\mathbb{E}\left[K \cdot X_n-K \cdot X_{n-1} \mid \mathcal{F}{n-1}\right] & =\mathbb{E}\left[K_n\left(X_n-X{n-1}\right) \mid \mathcal{F}{n-1}\right] \ & -K_n \mathbb{E}\left[X_n-X{n-1} \mid \mathcal{F}{n-1}\right], \end{aligned} $$ where the final equality is due to the fact that $\left(K_n\right)$ is $\left(\mathcal{F}_n\right){n \in \mathbb{N}}$-predictable. Now, when $\left(X_n\right)$ is an $\left(\mathcal{F}n\right){n \in \mathbb{N}}$ martingale [respectively submartingale, supermartingale], we have
$$
\mathbb{E}\left[X_n-X_{n-1} \mid \mathcal{F}_{n-1}\right]=0[\text { resp. } \geq 0, \leq 0] .
$$
The result of the theorem follows from this.

离散数学代写
数学代写|离散数学作业代写discrete mathematics代考|The Gambler’s ruin
作为本章的结尾和对金融数学题的介绍,让我们看一 下破产问题。赌徒有初始资本 $x$.
他们使用平衡的硬币拗正面或反面,如果正面朝上则赢 1 ,如果正面朝上则输 1。赌徒有一个固定的发财目标 $a \geq x$ 和失败的基线, $b \leq x$. 他们玩到他们的财富到达 $a$ 要么 $\langle b$.
赌徒的财富是使用随机游走建模的 $\left(S_n\right) n \in \mathbb{N}$ ,和 $S_0=x$ 和 $S_n=S_0+\sum k=1^n X_k$ ,在哪里 $X_k$ 代 表的奖金 $k$-th 折腾。
据了解,到达 $a$ 要么 $b$ ,从…开始 $x$ 相当于到达 $a-x$ 要 么 $b-x$ 从 0 开始。然后游戏几乎肯定会在有限时间结 束时停止。
我们用 $p_x$ 表示破产的概率,从初始资本开始 $x$ ,和 $R_x$ 表示事件从开始后就毁了 $x$ ,那是,
$$
p_x=\mathbb{P}\left(T_b<T_a\right)=\mathbb{P}\left(R_x\right) .
$$
可以直接注意到 $p_a=0$ 和 $p_b=1$ 因为在抆两种情况下 游戏都不会开始; 在第一种情况下毁灭是不可能的,而 在第二种情况下毁曱是肯定的。
我们现在将获得一个递归 $p_x$. 如果 $b<x<a$ ,然后使 用总概率公式,我们有
$$
p_x=\mathbb{P}\left(R_x\right) \quad=\mathbb{P}\left(R_x, \mid S_1=x+1\right) \mathbb{P}\left(S_1\right.
$$
通过使用平稳性。
数学代写|离散数学作业代写discrete mathematics代考|Martingale transform
定理 4.1.-令 $\left(K_n\right) n \in \mathbb{N}$ 积极向上 $\left(\mathcal{F}n\right) n \in \mathbb{N}$ 成为一 个可预测的过程。考虑 $\left(X_n\right) n \in \mathbb{N}$ 个 $\left(\mathcal{F}_n\right) n \in \mathbb{N}$ martingale [分别为 submartingale, supermartingale ]。如果进程 $\left(K_n\right) n \in \mathbb{N}$ 是有界的,那么过程 $\left(K \cdot X_n\right) n \in \mathbb{N}$ ,被定义为 $K \cdot X_0=X_0$ 对于任何 $n \geq 1$, $$ K \cdot X_n:=\sum{k=1}^n K_k\left(X_k-X_{k-1}\right)
$$
是一个 $(\mathcal{F} n) n \in \mathbb{N}$-鞅分别为submartingale, supermartingale]。过程 $\left(K \cdot X_n\right) n \in \mathbb{N}$ 称为一个鞅 变换 $\left(X_n\right)$.
$K \cdot X_n:=\sum k=1^n K_k\left(X_k-X_{k-1}\right)$, 显然 $\mathcal{F} n$ 可衡量的。相反,因为 $\left(K_n\right)$ 是有界的,存在 $M>0$ 这 样
$$
\mathbb{E}\left[\left|K \cdot X_n\right|\right] \leq M \sum k=1^n \mathbb{E}\left[\left|X_k-X_{k-1}\right|\right]<\infty
$$
因为 $\left(X_n\right)$ 是可积的。
最后,对于任何 $n \geq 1$ , 经过简化我们得到:
$$
\mathbb{E}\left[K \cdot X_n-K \cdot X_{n-1} \mid \mathcal{F} n-1\right]=\mathbb{E}\left[K _ { n } \left(X_n-X n\right.\right.
$$
最终的平等是由于以下事实 $\left(K_n\right)$ 是 $\left(\mathcal{F}n\right) n \in \mathbb{N}$-可预 见的。现在,当 $\left(X_n\right)$ 是一个 $(\mathcal{F} n) n \in \mathbb{N}$ martingale [分别为 submartingale, supermartingale], 我们有 $$ \mathbb{E}\left[X_n-X{n-1} \mid \mathcal{F}_{n-1}\right]=0[\text { resp. } \geq 0, \leq 0]
$$
定理的结果由此得出。

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。
金融工程代写
金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。
非参数统计代写
非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。
广义线性模型代考
广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。
术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。
有限元方法代写
有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。
有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。
tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。
随机分析代写
随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。
时间序列分析代写
随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。
回归分析代写
多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。
MATLAB代写
MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习和应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。
Post a Comment