如果你也在 怎样代写离散数学Discrete Mathematics MA210这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。离散数学Discrete Mathematics是(理论)计算机科学、统计学、概率论和代数基础的重要组成部分。这些思想在微积分的不同部分反复出现。许多人认为离散数学是所有现代数学思想中最重要的组成部分。
离散数学Discrete Mathematics 揭秘解释了这一全景的想法在一步一步和可访问的方式。作者是一位著名的教师和说明者,他对将要阅读这本书的学生的水平、他们的背景和他们的优势有很强的认识,并且可以用学生可以自己学习的易于理解的片段来呈现材料。精心挑选的例子和同源练习将强化所呈现的观点。经常复习、评估和应用这些思想将有助于学生保留和内化所有重要的微积分概念。
couryes-lab™ 为您的留学生涯保驾护航 在代写离散数学discrete mathematics方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写离散数学discrete mathematics代写方面经验极为丰富,各种代写离散数学discrete mathematics相关的作业也就用不着说。
数学代写|离散数学作业代写discrete mathematics代考|Composition of Relations and Relation Matrix
Let $R_1$ be a relation from the set $A$ to the set $B$ and $R_2$ be a relation from the set $B$ to the set C. That is $R_1$ is a subset of $(A \times B)$ and $R_2$ is a subset of $(B \times C)$. Then the composition of $R_1$ and $R_2$ is given by $R_1 R_2$ and the matrix of the composition $R_1 R_2$ is defined as
$$
M\left(R_1 R_2\right)=M\left(R_1\right) M\left(R_2\right)
$$
And replace all nonzero entries by 1 in $M\left(R_1 R_2\right)$ where $M\left(R_1\right)$ is the matrix of the relation $R_1$ and $M\left(R_2\right)$ is the matrix of the relation $R_2$.
Consider the same example stated above; we have
$$
M\left(R_1\right)=\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & 0 \
0 & 0 & 0 & 1 & 1 \
0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 1 & 0 \
0 & 0 & 0 & 0 & 0
\end{array}\right] \text { and } M\left(R_2\right)=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 \
1 & 0 & 0 & 0 \
0 & 1 & 0 & 0 \
0 & 0 & 0 & 1
\end{array}\right]
$$
So,
$$
\begin{aligned}
M\left(R_1 R_2\right) & =M\left(R_1\right) \mathbf{M}\left(R_2\right) \
& =\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & 0 \
0 & 0 & 0 & 1 & 1 \
0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 1 & 0 \
0 & 0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{llll}
0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 \
1 & 0 & 0 & 0 \
0 & 1 & 0 & 0 \
0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \
0 & 1 & 0 & 1 \
0 & 0 & 0 & 0 \
0 & 1 & 0 & 0 \
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$
Therefore $R_1 R_2={(1,1),(2,4),(2,25),(5,4)}$.
数学代写|离散数学作业代写discrete mathematics代考|Theorem
Let $R_1$ and $R_2$ are relations from the set $A$ to the set $B$. Let $R_3$ and $R_4$ are relations from the set B to the set C. If $R_1 \subseteq R_2$ and $R_3 \subseteq R_4$ then $R_1 R_3 \subseteq R_2 R_4$.
Proof: Given $R_1$ and $R_2$ are relations from the set $A$ to the set $B$. $R_3$ and $R_4$ are relations from the set $\mathrm{B}$ to the set $\mathrm{C}$.
Suppose that $\mathrm{R}_1 \subseteq \mathrm{R}_2$ and $\mathrm{R}_3 \subseteq \mathrm{R}_4$.
Let $(x, z) \in \mathrm{R}_1 \mathrm{R}_3$
Then for some $y \in \mathrm{B}$, we have $(x, y) \in \mathrm{R}_1$ and $(y, z) \in \mathrm{R}_3$. Therefore we have $(x, y) \in \mathrm{R}_1 \subseteq$ $\mathrm{R}_2$ and $(y, z) \in \mathrm{R}_3 \subseteq \mathrm{R}_4$.
$$
\begin{array}{ll}
\text { i.e. } & (x, y) \in \mathrm{R}_2 \text { and }(y, z) \in \mathrm{R}_4 . \
\text { This implies } & (x, z) \in \mathrm{R}_2 \mathrm{R}_4 . \
\text { Hence } & (x, z) \in \mathrm{R}_1 \mathrm{R}_3 \Rightarrow(x, z) \in \mathrm{R}_2 \mathrm{R}_4 \
\text { i.e. } & \mathrm{R}_1 \mathrm{R}_3 \subseteq \mathrm{R}_2 \mathrm{R}_4 .
\end{array}
$$
3.10.3 Theorem
Let $R_1$ be relation from the set $A$ to the set $B$ and $R_2$ be a relation from the set $B$ to the set $C$. Then.
$$
\left(R_1 R_2\right)^{-1}=R_2^{-1} R_1^{-1} \text {. }
$$
Proof: Let $R_1$ be a relation from the set $A$ to the set $B$ and $R_2$ be a relation from the set $B$ to the set C.
Our claim: $\quad\left(\mathrm{R}_1 \mathrm{R}_2\right)^{-1}=\mathrm{R}_2^{-1} \mathrm{R}_1^{-1}$.
i.e.
$$
\left(\mathrm{R}_1 \mathrm{R}_2\right)^{-1} \subseteq \mathrm{R}_2^{-1} \mathrm{R}_1^{-1} \text { and } \mathrm{R}_2^{-1} \mathrm{R}_1^{-1} \subseteq\left(\mathrm{R}_1 \mathrm{R}_2\right)^{-1}
$$
Let
$$
(x, z) \in\left(\mathrm{R}_1 \mathrm{R}_2\right)^{-1}
$$
This implies $(z, x) \in \mathrm{R}_1 \mathrm{R}_2$. Then for some $y \in \mathrm{B}$ we have
$$
\begin{aligned}
& (z, y) \in \mathrm{R}_1 \text { and }(y, x) \in \mathrm{R}_2 \
& \Rightarrow \
& (y, z) \in \mathrm{R}_1^{-1} \text { and }(x, y) \in \mathrm{R}_2^{-1} \
& \text { i.e. } \
& (x, y) \in \mathrm{R}_2^{-1} \text { and }(y, z) \in \mathrm{R}_1^{-1} \
& (x, z) \in \mathrm{R}_2^{-1} \mathrm{R}_1^{-1} \
& (x, z) \in\left(\mathrm{R}_1 \mathrm{R}_2\right)^{-1} \Rightarrow(x, z) \in \mathrm{R}_2^{-1} \mathrm{R}_1^{-1} \
& \left(\mathrm{R}_1 \mathrm{R}_2\right)^{-1} \subseteq \mathrm{R}_2^{-1} \mathrm{R}_1^{-1} \
&
\end{aligned}
$$
This implies
Therefore
i.e.
$$
(x, z) \in\left(\mathrm{R}_1 \mathrm{R}_2\right)^{-1} \Rightarrow(x, z) \in \mathrm{R}_2^{-1} \mathrm{R}_1^{-1}
$$
$$
\left(\mathrm{R}_1 \mathrm{R}_2\right)^{-1} \subseteq \mathrm{R}_2^{-1} \mathrm{R}_1^{-1}
$$
Again let $(x, z) \in \mathrm{R}_2^{-1} \mathrm{R}_1^{-1}$. Then for some $y \in \mathrm{B}$ we have
$\Rightarrow$
i.e.
This implies
i.e.
Therefore
i.e.
$$
\begin{aligned}
& (x, y) \in \mathrm{R}_2^{-1} \text { and }(y, z) \in \mathrm{R}_1^{-1} \
& (y, x) \in \mathrm{R}_2 \text { and }(z, y) \in \mathrm{R}_1
\end{aligned}
$$
$(z, y) \in \mathrm{R}_1$ and $(y, x) \in \mathrm{R}_2$
$(z, x) \in \mathrm{R}_1 \mathrm{R}_2$
$(x, z) \in\left(\mathrm{R}_1 \mathrm{R}_2\right)^{-1}$
$(x, z) \in \mathrm{R}_2^{-1} \mathrm{R}_1^{-1} \Rightarrow(x, z) \in\left(\mathrm{R}_1 \mathrm{R}_2\right)^{-1}$
$\mathrm{R}_2^{-1} \mathrm{R}_1^{-1} \subseteq\left(\mathrm{R}_1 \mathrm{R}_2\right)^{-1}$
Thus from equations ( $i$ ) and (ii) we get $\left(\mathrm{R}_1 \mathrm{R}_2\right)^{-1}=\mathrm{R}_2^{-1} \mathrm{R}_1^{-1}$.
离散数学代写
数学代写|离散数学作业代写discrete mathematics代考|Composition of Relations and Relation Matrix
设$R_1$是集合$A$到集合$B$的关系,$R_2$是集合$B$到集合c的关系,即$R_1$是$(A \times B)$的一个子集,$R_2$是$(B \times C)$的一个子集。那么$R_1$和$R_2$的组合由$R_1 R_2$给出,组合$R_1 R_2$的矩阵定义为
$$
M\left(R_1 R_2\right)=M\left(R_1\right) M\left(R_2\right)
$$
并将$M\left(R_1 R_2\right)$中的所有非零项替换为1,其中$M\left(R_1\right)$是关系$R_1$的矩阵$M\left(R_2\right)$是关系$R_2$的矩阵。
考虑上述相同的例子;我们有
$$
M\left(R_1\right)=\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & 0 \
0 & 0 & 0 & 1 & 1 \
0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 1 & 0 \
0 & 0 & 0 & 0 & 0
\end{array}\right] \text { and } M\left(R_2\right)=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 \
1 & 0 & 0 & 0 \
0 & 1 & 0 & 0 \
0 & 0 & 0 & 1
\end{array}\right]
$$
所以,
$$
\begin{aligned}
M\left(R_1 R_2\right) & =M\left(R_1\right) \mathbf{M}\left(R_2\right) \
& =\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & 0 \
0 & 0 & 0 & 1 & 1 \
0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 1 & 0 \
0 & 0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{llll}
0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 \
1 & 0 & 0 & 0 \
0 & 1 & 0 & 0 \
0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \
0 & 1 & 0 & 1 \
0 & 0 & 0 & 0 \
0 & 1 & 0 & 0 \
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$
因此$R_1 R_2={(1,1),(2,4),(2,25),(5,4)}$。
数学代写|离散数学作业代写discrete mathematics代考|Theorem
设$R_1$和$R_2$是集合$A$到集合$B$的关系。设$R_3$和$R_4$是集合B到集合c的关系。如果$R_1 \subseteq R_2$和$R_3 \subseteq R_4$则$R_1 R_3 \subseteq R_2 R_4$。
证明:给定$R_1$和$R_2$是集合$A$到集合$B$的关系。$R_3$和$R_4$是集合$\mathrm{B}$到集合$\mathrm{C}$的关系。
假设是$\mathrm{R}_1 \subseteq \mathrm{R}_2$和$\mathrm{R}_3 \subseteq \mathrm{R}_4$。
让$(x, z) \in \mathrm{R}_1 \mathrm{R}_3$
对于一些$y \in \mathrm{B}$,我们有$(x, y) \in \mathrm{R}_1$和$(y, z) \in \mathrm{R}_3$。因此我们有$(x, y) \in \mathrm{R}_1 \subseteq$$\mathrm{R}_2$和$(y, z) \in \mathrm{R}_3 \subseteq \mathrm{R}_4$。
$$
\begin{array}{ll}
\text { i.e. } & (x, y) \in \mathrm{R}_2 \text { and }(y, z) \in \mathrm{R}_4 . \
\text { This implies } & (x, z) \in \mathrm{R}_2 \mathrm{R}_4 . \
\text { Hence } & (x, z) \in \mathrm{R}_1 \mathrm{R}_3 \Rightarrow(x, z) \in \mathrm{R}_2 \mathrm{R}_4 \
\text { i.e. } & \mathrm{R}_1 \mathrm{R}_3 \subseteq \mathrm{R}_2 \mathrm{R}_4 .
\end{array}
$$
3.10.3定理
设$R_1$是集合$A$到集合$B$的关系,$R_2$是集合$B$到集合$C$的关系。然后。
$$
\left(R_1 R_2\right)^{-1}=R_2^{-1} R_1^{-1} \text {. }
$$
证明:设$R_1$是集合$A$到集合$B$的关系,$R_2$是集合$B$到集合C的关系。
我们的索赔:$\quad\left(\mathrm{R}_1 \mathrm{R}_2\right)^{-1}=\mathrm{R}_2^{-1} \mathrm{R}_1^{-1}$。
例如:
$$
\left(\mathrm{R}_1 \mathrm{R}_2\right)^{-1} \subseteq \mathrm{R}_2^{-1} \mathrm{R}_1^{-1} \text { and } \mathrm{R}_2^{-1} \mathrm{R}_1^{-1} \subseteq\left(\mathrm{R}_1 \mathrm{R}_2\right)^{-1}
$$
让
$$
(x, z) \in\left(\mathrm{R}_1 \mathrm{R}_2\right)^{-1}
$$
这意味着$(z, x) \in \mathrm{R}_1 \mathrm{R}_2$。对于一些$y \in \mathrm{B}$,我们有
$$
\begin{aligned}
& (z, y) \in \mathrm{R}_1 \text { and }(y, x) \in \mathrm{R}_2 \
& \Rightarrow \
& (y, z) \in \mathrm{R}_1^{-1} \text { and }(x, y) \in \mathrm{R}_2^{-1} \
& \text { i.e. } \
& (x, y) \in \mathrm{R}_2^{-1} \text { and }(y, z) \in \mathrm{R}_1^{-1} \
& (x, z) \in \mathrm{R}_2^{-1} \mathrm{R}_1^{-1} \
& (x, z) \in\left(\mathrm{R}_1 \mathrm{R}_2\right)^{-1} \Rightarrow(x, z) \in \mathrm{R}_2^{-1} \mathrm{R}_1^{-1} \
& \left(\mathrm{R}_1 \mathrm{R}_2\right)^{-1} \subseteq \mathrm{R}_2^{-1} \mathrm{R}_1^{-1} \
&
\end{aligned}
$$
这意味着
因此
例如:
$$
(x, z) \in\left(\mathrm{R}_1 \mathrm{R}_2\right)^{-1} \Rightarrow(x, z) \in \mathrm{R}_2^{-1} \mathrm{R}_1^{-1}
$$
$$
\left(\mathrm{R}_1 \mathrm{R}_2\right)^{-1} \subseteq \mathrm{R}_2^{-1} \mathrm{R}_1^{-1}
$$
再次让$(x, z) \in \mathrm{R}_2^{-1} \mathrm{R}_1^{-1}$。对于一些$y \in \mathrm{B}$,我们有
$\Rightarrow$
例如:
这意味着
例如:
因此
例如:
$$
\begin{aligned}
& (x, y) \in \mathrm{R}_2^{-1} \text { and }(y, z) \in \mathrm{R}_1^{-1} \
& (y, x) \in \mathrm{R}_2 \text { and }(z, y) \in \mathrm{R}_1
\end{aligned}
$$
$(z, y) \in \mathrm{R}_1$和$(y, x) \in \mathrm{R}_2$
$(z, x) \in \mathrm{R}_1 \mathrm{R}_2$
$(x, z) \in\left(\mathrm{R}_1 \mathrm{R}_2\right)^{-1}$
$(x, z) \in \mathrm{R}_2^{-1} \mathrm{R}_1^{-1} \Rightarrow(x, z) \in\left(\mathrm{R}_1 \mathrm{R}_2\right)^{-1}$
$\mathrm{R}_2^{-1} \mathrm{R}_1^{-1} \subseteq\left(\mathrm{R}_1 \mathrm{R}_2\right)^{-1}$
因此,由式($i$)和(ii)我们得到$\left(\mathrm{R}_1 \mathrm{R}_2\right)^{-1}=\mathrm{R}_2^{-1} \mathrm{R}_1^{-1}$。
统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。