物理代写|宇宙学代写cosmology代考|OLET1640

2022年12月28日

couryes-lab™ 为您的留学生涯保驾护航 在代写宇宙学cosmology方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写宇宙学cosmology代写方面经验极为丰富，各种代写宇宙学cosmology相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础
couryes™为您提供可以保分的包课服务

物理代写|宇宙学代写cosmology代考|Relation between scale factor and temperature

The primordial plasma is in adiabatic expansion and its entropy is preserved. We consider an elementary volume expanding with space. Such a volume is called a covolume because its comoving coordinates $r, \theta$ and $\phi$ do not vary with time. For simplicity, a volume equal to $a^3$ is taken where $a(t)$ is the scale factor. The entropy of the primordial plasma contained in this volume is written as:
$$s=\mathcal{S}(T) a^3$$
and does not vary with time. Equation [1.43] allow the entropy $s$ to be directly expressed as a function of the temperature $T$ and the scaling factor $a$ :
$$s \equiv \frac{4 \pi^2}{45} T^3 h_{\mathrm{eff}}(T) a^3$$
We thus obtain a relation between the logarithmic derivatives of $a$ and $T$ in the form:
$$H \equiv \frac{\dot{a}}{a}=-\frac{\dot{T}}{T}\left{1+\frac{1}{3} \frac{\mathrm{d} \ln h_{\mathrm{eff}}}{\mathrm{d} \ln T}\right}$$
which now makes it possible to solve equation [1.59] relating to the expansion.
As a first approximation, we can neglect the variations of the coefficient $h_{\text {eff }}$ with temperature. Figure $1.3$ shows that $h_{\text {eff }}$ varies only by a factor of 8 when the temperature decreases by three orders of magnitude, from $10 \mathrm{GeV}$ to $10 \mathrm{MeV}$. Thereby, we deduce a value of $0.1$ for the term $\mathrm{d} \ln h_{\mathrm{eff}} / 3 \mathrm{~d} \ln T$ between the previous braces $s_4$ a small value compared to $1_{\text {. The conservation of entropy s thus implies, up }}$ to the variations of $h_{\mathrm{eff}}$, that the product $T \times a$ of the temperature by the scale factor does not vary with time. From this relation, we shall be able to derive analytically the age of the universe based on the temperature of the ylem with a quite acceptable accuracy.

One should notice however that if $h_{\text {eff }}$ varies globally only very little with time. this is not the case during the quarks/hadrons phase transition during which the QGP transforms into a plasma of pions, with traces of protons and neutrons. We have assumed this transition to be of first order, hence a sharp decrease in $h_{\text {eff }}$ from $31.03$ to 8.48. During this phase transition, the temperature remains locked at $200 \mathrm{MeV}$, so that it is the product $h_{\text {eff }} \times a^3$ which is now constant. The scale factor has increased by a factor $(31.03 / 8.48)^{1 / 3} \simeq 1.54$ when the transition ends.

物理代写|宇宙学代写cosmology代考|Relation between cosmic time and temperature

We can now integrate equation [1.59] by taking into account relation [1.64] that we just established between the scale factor $a$ and the temperature $T$. It expresses the fact that the product $h_{\text {eff }} T^3 a^3$ is constant during the expansion. During the cosmic time $d t$, the temperature of ylem varies by $d T$, such that:
$$d t=-\sqrt{\frac{45}{8 \pi^3}} M_{\mathrm{Pl}}\left{\frac{1+\left(\mathrm{d} \ln h_{\mathrm{eff}} / 3 \mathrm{~d} \ln T\right)}{\sqrt{g_{\mathrm{eff}}}}\right} \frac{d T}{T^3}$$
The integration of this differential equation is in principle easy, using, for example, the classical fourth-order Runge-Kutta method (Press et al. 2007). The only technical difficulty is the divergence of the derivative of $\ln h_{\text {eff }}$ with respect to $\ln T$ at the time of the quarks/hadrons phase transition.

Forgetting this problem for the moment and neglecting the variation of $h_{\mathrm{eff}}$ with temperature, it follows that:
$$d t=-\sqrt{\frac{45}{8 \pi^3}} \frac{M_{\mathrm{Pl}}}{\sqrt{g_{\mathrm{eff}}}} \frac{d T}{T^3}$$
The age of the universe $t$ is given by the integral on the temperature $T^{\prime}$ varying from infinity, a value corresponding to the Big Bang, down to $T$ :
$$t=\int_0^t d t^{\prime}=\sqrt{\frac{45}{32 \pi^3}} \int_{\infty}^T \frac{M_{\mathrm{Pl}}}{\sqrt{g_{\mathrm{eff}}\left(T^{\prime}\right)}} d\left(T^{\prime-2}\right)$$
The temperature values near $T$ provide the dominant contribution to this integral. The coefficient $g_{\text {eff }}$ can be evaluated at temperature $T$ and treated as a constant. The cosmic time is then simplified to:
$$t \simeq \sqrt{\frac{45}{32 \pi^3}} \frac{M_{\mathrm{Pl}}}{\sqrt{g_{\mathrm{eff}}(T)}} \int_{\infty}^T d\left(T^{\prime-2}\right) \equiv \sqrt{\frac{45}{32 \pi^3}} \frac{1}{\sqrt{g_{\mathrm{eff}}(T)}} \frac{M_{\mathrm{P} 1}}{T^2}$$
The previous expression is evaluated in the system of units where $c=k_{\mathrm{B}}=$ $\hbar=1$. The Planck mass $M_{\mathrm{Pl}}$ and the temperature $T$ can be expressed in $\mathrm{MeV}$, so that the ratio $M_{\mathrm{Pl}} / T^2$ is evaluated in $\mathrm{MeV}^{-1}$. To obtain a cosmic time $t$ expressed in seconds, one mainly has to multiply the result by the reduced Planck constant $\hbar=6.582 \times 10^{-22} \mathrm{MeV} \mathrm{s}$. Our final result is then written in the form:
$$t \simeq \frac{1.71 \mathrm{~s}}{\sqrt{g_{\mathrm{eff}}(T)}}\left{\frac{1 \mathrm{MeV}}{T}\right}^2$$

物理代写|宇宙学代写cosmology代考|Relation between scale factor and temperature

$$s=\mathcal{S}(T) a^3$$

$$s \equiv \frac{4 \pi^2}{45} T^3 h_{\mathrm{eff}}(T) a^3$$

H lequiv Ifrac ${\backslash d o t{a}}{}=-$ Ifrac ${\backslash \operatorname{dot}{T}}{T} \backslash \operatorname{lef}{1+\mid$ frac

1. The conservation of entropy s thus implies, up 的变化 $h_{\text {eff }}$ ，即产品 $T \times a$ 比例因子的温度不随时间变化。从这个 关系中，我们将能够以相当可接受的精度，根据 ylem 的温度分析推导出宇宙的年龄。
然而，人们应该注意到，如果 $h_{\mathrm{eff}}$ 在全球范围内随时间 变化很小。在夸克/强子相变期间情况并非如此，在此期 间 QGP 转变成介子等离子体，带有质子和中子的痕迹。 我们假设这种转变是一阶的，因此急剧下降 $h_{\mathrm{eff}}$ 从 31.03到 8.48。在此相变期间，温度保持锁定在 $200 \mathrm{MeV}$ ，所以它是产品 $h_{\text {eff }} \times a^3$ 现在是不变的。比 例因子增加了一个因子 $(31.03 / 8.48)^{1 / 3} \simeq 1.54$ 当过 渡结束时。

物理代写|宇宙学代写cosmology代考|Relation between cosmic time and temperature

$\mathrm{d} \mathrm{t}=-$ Isqrt $\left.\left{\backslash \operatorname{frac}{45}\left{8 \backslash \mathrm{pi}^{\wedge} 3\right}\right} M_{-}{\backslash \mathrm{mathrm}{\mathrm{P}}}\right} \backslash \mathrm{eft}{\backslash \operatorname{frac}{1+$

$$d t=-\sqrt{\frac{45}{8 \pi^3}} \frac{M_{\mathrm{Pl}}}{\sqrt{g_{\mathrm{eff}}}} \frac{d T}{T^3}$$

$$t=\int_0^t d t^{\prime}=\sqrt{\frac{45}{32 \pi^3}} \int_{\infty}^T \frac{M_{\mathrm{Pl}}}{\sqrt{g_{\mathrm{eff}}\left(T^{\prime}\right)}} d\left(T^{\prime-2}\right)$$

$$t \simeq \sqrt{\frac{45}{32 \pi^3}} \frac{M_{\mathrm{Pl}}}{\sqrt{g_{\mathrm{eff}}(T)}} \int_{\infty}^T d\left(T^{\prime-2}\right) \equiv \sqrt{\frac{45}{32 \pi^3}}$$

$\hbar=6.582 \times 10^{-22} \mathrm{MeVs}$. 然后我们的最终结果写成 以下形式:

有限元方法代写

tatistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。