## 数学代写|凸优化作业代写Convex Optimization代考|MATH4071

2023年2月1日

couryes-lab™ 为您的留学生涯保驾护航 在代写凸优化Convex Optimization方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写凸优化Convex Optimization代写方面经验极为丰富，各种代写凸优化Convex Optimization相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础
couryes™为您提供可以保分的包课服务

## 数学代写|凸优化作业代写Convex Optimization代考|Convex hull description of polyhedra

The convex hull of the finite set $\left{v_1, \ldots, v_k\right}$ is
$$\operatorname{conv}\left{v_1, \ldots, v_k\right}=\left{\theta_1 v_1+\cdots+\theta_k v_k \mid \theta \succeq 0, \mathbf{1}^T \theta=1\right}$$
This set is a polyhedron, and bounded, but (except in special cases, e.g., a simplex) it is not simple to express it in the form (2.5), i.e., by a set of linear equalities and inequalities.
A generalization of this convex hull description is
$$\left{\theta_1 v_1+\cdots+\theta_k v_k \mid \theta_1+\cdots+\theta_m=1, \theta_i \geq 0, i=1, \ldots, k\right},$$
where $m \leq k$. Here we consider nonnegative linear combinations of $v_i$, but only the first $m$ coefficients are required to sum to one. Alternatively, we can interpret (2.9) as the convex hull of the points $v_1, \ldots, v_m$, plus the conic hull of the points $v_{m+1}, \ldots, v_k$. The set $(2.9)$ defines a polyhedron, and conversely, every polyhedron can be represented in this form (although we will not show this).

The question of how a polyhedron is represented is subtle, and has very important practical consequences. As a simple example consider the unit ball in the $\ell_{\infty}-$ norm in $\mathbf{R}^n$
$$C=\left{x|| x_i \mid \leq 1, i=1, \ldots, n\right} .$$
The set $C$ can be described in the form (2.5) with $2 n$ linear inequalities $\pm e_i^T x \leq 1$, where $e_i$ is the $i$ th unit vector. To describe it in the convex hull form (2.9) requires at least $2^n$ points:
$$C=\operatorname{conv}\left{v_1, \ldots, v_{2^n}\right},$$
where $v_1, \ldots, v_{2^n}$ are the $2^n$ vectors all of whose components are 1 or $-1$. Thus the size of the two descriptions differs greatly, for large $n$.

## 数学代写|凸优化作业代写Convex Optimization代考|Linear-fractional functions

A linear-fractional function is formed by composing the perspective function with an affine function. Suppose $g: \mathbf{R}^n \rightarrow \mathbf{R}^{m+1}$ is affine, i.e.,
$$g(x)=\left[\begin{array}{c} A \ c^T \end{array}\right] x+\left[\begin{array}{l} b \ d \end{array}\right]$$
where $A \in \mathbf{R}^{m \times n}, b \in \mathbf{R}^m, c \in \mathbf{R}^n$, and $d \in \mathbf{R}$. The function $f: \mathbf{R}^n \rightarrow \mathbf{R}^m$ given by $f=P \circ g$, i.e.,
$$f(x)=(A x+b) /\left(c^T x+d\right), \quad \operatorname{dom} f=\left{x \mid c^T x+d>0\right},$$
is called a linear-fractional (or projective) function. If $c=0$ and $d>0$, the domain of $f$ is $\mathbf{R}^n$, and $f$ is an affine function. So we can think of affine and linear functions as special cases of linear-fractional functions.

Like the perspective function, linear-fractional functions preserve convexity. If $C$ is convex and lies in the domain of $f$ (i.e., $c^T x+d>0$ for $x \in C$ ), then its image $f(C)$ is convex. This follows immediately from results above: the image of $C$ under the affine mapping (2.12) is convex, and the image of the resulting set under the perspective function $P$, which yields $f(C)$, is convex. Similarly, if $C \subseteq \mathbf{R}^m$ is convex, then the inverse image $f^{-1}(C)$ is convex.

## 数学代写|凸优化作业代写Convex Optimization代考|Convex hull description of polyhedra

loperatorname{conv}}left{v_1, 1 dots, $\left.v_{-} k \mid r i g h t\right}=\backslash$ left ${t}$

Veft{ltheta_1 v_1+Icdots+ltheta_k v_k \mid Itheta_1+Icd

$C=\backslash$ 左 $\left{x|| x_{-} i \backslash m i d \mid l\right.$ leq $1, i=1, |$ dots, n\right } } \text { 。 }

$\pm e_i^T x \leq 1$ ，在哪里 $e_i$ 是个 $i$ 第单位向量。用凸包形式
(2.9) 来描述它至少需要 $2^n$ 要点:

## 数学代写|凸优化作业代写Convex Optimization代考|Linear-fractional functions

$$g(x)=\left[A c^T\right] x+[b d]$$

$f(x)=(A x+b) / \operatorname{left}\left(c^{\wedge} T x+d \backslash r i g h t\right)$, lquad loperatorname ${\Lambda$

## 有限元方法代写

tatistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。