# 数学代写|凸优化作业代写Convex Optimization代考|ELEC4631

#### Doug I. Jones

Lorem ipsum dolor sit amet, cons the all tetur adiscing elit

couryes-lab™ 为您的留学生涯保驾护航 在代写凸优化Convex Optimization方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写凸优化Convex Optimization代写方面经验极为丰富，各种代写凸优化Convex Optimization相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础
couryes™为您提供可以保分的包课服务

## 数学代写|凸优化作业代写Convex Optimization代考|Multi-Objective P-Algorithm

In this section, a single-objective global optimization algorithm, based on a statistical model of multimodal functions, namely the P-algorithm, is generalized for the case of black-box multi-objective optimization. For the axiomatic definition of statistical models of multimodal black-box functions and the single-objective Palgorithm, we refer to [242,243].

The minimization is considered at the $n+1$-st minimization step. The points where the objective functions were computed are denoted by $\mathbf{x}i, i=1, \ldots, n$, and the corresponding objective vectors are denoted by $\mathbf{y}_i=\mathbf{f}\left(\mathbf{x}_i\right) ; \mathbf{y}_i=\left(y{i 1}, \ldots, y_{i m}\right)$. Based on the discussion in the previous section, the vector-valued Gaussian random field
$$\Xi(\mathbf{x}) \in \mathbb{R}^m, \mathbf{x} \in \mathbf{A} \subset \mathbb{R}^d$$ is accepted as a model of the vector objective function. In the frame of that model, an unknown vector of objectives $\mathbf{f}(\mathbf{x}), \mathbf{x} \neq \mathbf{x}i, i=1, \ldots, n$, is interpreted as a random vector whose distribution is defined by the conditional distribution function of $\Xi(\mathbf{x})$ $$\Pi_x^n(\mathbf{t})=P\left{\Xi(\mathbf{x}) \leq \mathbf{t} \mid \Xi\left(\mathbf{x}_i\right)=\mathbf{y}_i, i=1, \ldots, n\right} .$$ Ihe choice of the current observation point, 1.e., of the point where to compute the vector of objectives at the current minimization step, is a decision under uncertainty. The statistical model (7.2) represents the uncertainty in a result of the decision. With respect to the statistical model (7.2), the choice of the current observation point $\mathbf{x}{n+1} \in \mathbf{A}$ means a choice of a distribution function from the set of distribution functions $\Pi_x^n(\cdot), \quad \mathbf{x} \in \mathbf{A}$. To justify the choice, the methodology of rational decision making under uncertainty can be applied. If the preference of choice satisfies the rationality principles, then there exists a unique (to within a linear transformation) utility function $U(\cdot)$ compatible with the preference of choice [58]:
$$\Pi_x^n(\cdot) \succ \Pi_z^n(\cdot) \text { iff } \int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} U(\mathbf{t}) \cdot d \Pi_x^n(\mathbf{t}) \geq \int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} U(\mathbf{t}) \cdot d \Pi_z^n(\mathbf{t}) .$$
The problem of selection of a utility function for the case of single-objective minimization $\left(\min _{\mathbf{x} \in \mathbf{A}} f(\mathbf{x})\right)$ was considered in [243]. The classical axioms of rational decision making (see, e.g., $[58,182]$ ) are reformulated in terms of the rationality of search for the global minimum in [243], where it has also been shown that the following utility function
$$u(t)=1 \text {, for } t \leq y^n, \text { and } u(t)=0, \text { for } t>y^n$$
is compatible with these axioms; $y^n$ denotes an improvement threshold: a new function value at the current step is considered an improvement if it is smaller than $y^n ; y^n<y_i, i=1, \ldots, n ; y_i=f\left(\mathbf{x}_i\right)$ are the function values computed at previous minimization steps. The average utility defined using the utility function (7.5) means the improvement probability.

## 数学代写|凸优化作业代写Convex Optimization代考|A New Approach to Single-Objective Optimization

Let us consider the current minimization step, where $n$ function values have been computed at the previous steps: $y_i=f\left(\mathbf{x}_i\right), i=1, \ldots, n$. A rational choice of a point for the next computation of the objective function value cannot be performed without the assessment of the uncertainty in the result of the computation. The only objective information on $f(\cdot)$ is $\mathbf{x}_i, y_i, i=1, \ldots, n$. Besides that objective information, normally some subjective information is available, e.g., the experience of solution of similar problems in the past. As shown in [242], very general assumptions on the rational perception of uncertainty imply a random variable model for the objective function value to be computed, i.e. those assumptions imply that a random variable $\xi_x, \mathbf{x} \in \mathbf{A}, \mathbf{x} \neq \mathbf{x}_i, i=1, \ldots, n$, is acceptable as a statistical model of the unknown value of the objective function $f(\mathbf{x})$. We refer to $[216,239]$ for the axiomatic construction of a computationally simple statistical model of objective functions. In case a stochastic function is chosen as a statistical model of $f(\cdot)$, the corresponding random variable is defined by the conditional distribution of this stochastic function.

Let us consider the choice of a point for the current computation of the objective function value. Such a choice in the black-box situation is a decision under uncertainty, and the rational decision theory [58] can be applied to make the choice rationally. The theory suggests to make a decision by maximizing the average utility. To compute the average utility, a utility function is needed besides of a statistical model of uncertainty. A utility function corresponding to the conception of global optimization is proposed in [243]. However, a natural extension of the axioms proposed in [243] to the multi-objective case is difficult.

Any characterization of a random variahle normally includes a location parameter (e.g., the mean value) and a spread parameter (e.g., the standard deviation); we use a minimal description of $\xi_x$ by these two parameters denoted by $m(\mathbf{x})$ and $s(\mathbf{x})$. The dependence of both parameters on the information available at the current optimization step $\left(\mathbf{x}i, y_i, i=1, \ldots, n\right)$ will be included into the notation where needed. Assume that the average utility of computation of the current objective function value at the point $\mathbf{x}$ at the $n$ step $V{n+1}(\cdot)$ depends on $\mathbf{x}$ only via $m(\mathbf{x})$ and $s(\mathbf{x})$ :
$$V_{n+1}\left(m(\mathbf{x}), s(\mathbf{x}), y^n\right)=\int_{-\infty}^{\infty} u(t) d \Pi_x^1(t),$$
where the threshold for the improvement is also shown as a variable influencing the average utility. The subscript can be omitted in the cases where general properties of the average utility are considered independently of the number of steps of the search. The shorthand $v_{n+1}(\mathbf{x})$ is usable where only the dependence of the average utility on $\mathbf{x}$ is of interest.

## 有限元方法代写

tatistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

Days
Hours
Minutes
Seconds

# 15% OFF

## On All Tickets

Don’t hesitate and buy tickets today – All tickets are at a special price until 15.08.2021. Hope to see you there :)