# 计算机代写|计算机图形学代写computer graphics代考|COS426

#### Doug I. Jones

Lorem ipsum dolor sit amet, cons the all tetur adiscing elit

couryes-lab™ 为您的留学生涯保驾护航 在代写计算机图形学computer graphics方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写计算机图形学computer graphics代写方面经验极为丰富，各种代写计算机图形学computer graphics相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础
couryes™为您提供可以保分的包课服务

## 计算机代写|计算机图形学代写computer graphics代考|Function Domains and Ranges

The following descriptions of domains and ranges only apply to functions with one independent variable: $f(x)$.
Returning to the above function:
$$y=f(x)=3 x^2+2 x+4$$
the independent variable $x$, can take on any value from $-\infty$ to $\infty$, which is called the domain of the function. In this case, the domain of $f(x)$ is the set of real numbers

$\mathbb{R}$. The notation used for intervals, is also used for domains, which in this case is
$$]-\infty, \infty[$$
and is open, as there are no precise values for $-\infty$ and $\infty$.
As the independent variable takes on different values from its domain, so the dependent variable, $y$ or $f(x)$, takes on different values from its range. Therefore, if the domain of the linear function $f(x)=3 x+4$ is $[-4,4]$, the range of $f(x)$ is calculated by finding $f(-4)$ and $f(4)$ :
$$\begin{gathered} f(-4)=-12+4=-8 \ f(4)=12+4=16 \end{gathered}$$
and the range is $[-4,4]$.
Although calculating the range of linear functions is simple, other types of functions require a knowledge of calculus.
The domain of $\log x$ is
$$] 0, \infty[$$
which is open, because $x \neq 0$. Whereas, the range of $\log x$ is
$$]-\infty, \infty[\text {. }$$
The domain of $\sqrt{x}$ is
$$[0, \infty[$$
which is half-open, because $\sqrt{0}=0$, and $\infty$ has no precise value.

## 计算机代写|计算机图形学代写computer graphics代考|Units of Angular Measurement

The measurement of angles is at the heart of trigonometry, and today two units of angular measurement are part of modern mathematics: degrees and radians. The degree (or sexagesimal) unit of measure derives from defining one complete rotation as $360^{\circ}$. Each degree divides into $60 \mathrm{~min}$, and each minute divides into $60 \mathrm{~s}$. The number 60 has survived from Mesopotamian days and appears rather incongruous when used alongside today’s decimal system-nevertheless, it is still convenient to work with degrees even though the radian is a natural feature of mathematics.
The radian of angular measure does not depend upon any arbitrary constant, and is often defined as the angle created by a circular arc whose length is equal to the circle’s radius. And because the perimeter of a circle is $2 \pi r, 2 \pi$ rad correspond to one complete rotation. As $360^{\circ}$ corresponds to $2 \pi \mathrm{rad}, 1 \mathrm{rad}$ equals $180^{\circ} / \pi$, which is approximately $57.3^{\circ}$. The following relationships between radians and degrees are worth remembering:
\begin{aligned} \frac{\pi}{2}[\mathrm{rad}] & \equiv 90^{\circ}, & \pi[\mathrm{rad}] \equiv 180^{\circ} \ \frac{3 \pi}{2}[\mathrm{rad}] & \equiv 270^{\circ}, & 2 \pi[\mathrm{rad}] \equiv 360^{\circ} . \end{aligned}
To convert $x^{\circ}$ to radians:
$$\frac{\pi x^{\circ}}{180}[\mathrm{rad}] .$$
To convert $x$ [rad] to degrees:
$$\frac{180 x}{\pi} \text { [degrees]. }$$
For those readers wishing to know the background to radians we need to use power series. We start with the power series for $\mathrm{e}^\theta, \sin \theta$ and $\cos \theta$ :
\begin{aligned} \mathrm{e}^\theta & =1+\frac{\theta^1}{1 !}+\frac{\theta^2}{2 !}+\frac{\theta^3}{3 !}+\frac{\theta^4}{4 !}+\frac{\theta^5}{5 !}+\frac{\theta^6}{6 !}+\frac{\theta^7}{7 !}+\frac{\theta^8}{8 !}+\frac{\theta^9}{9 !}+\cdots \ \sin \theta & =\theta-\frac{\theta^3}{3 !}+\frac{\theta^5}{5 !}-\frac{\theta^7}{7 !}+\frac{\theta^9}{9 !}+\cdots \ \cos \theta & =1-\frac{\theta^2}{2 !}+\frac{\theta^4}{4 !}-\frac{\theta^6}{6 !}+\frac{\theta^8}{8 !}+\cdots . \end{aligned}
Euler proved that these three power series are related, and when $\theta=\pi, \sin \theta=0$, and $\cos \theta=-1$. Figure $4.1$ shows curves of the sine power series for $3,5,7$ and 9 terms, and when $\theta=2 \pi$, the graph reaches zero.

# 计算机图形学代考

## 计算机代写|计算机图形学代写computer graphics代考|Function Domains and Ranges

$$y=f(x)=3 x^2+2 x+4$$

$\mathbb{R}$. 用于间隔的符号也用于域，在这种情况下是
$$]-\infty, \infty[$$

$$f(-4)=-12+4=-8 f(4)=12+4=16$$

$$] 0, \infty[$$

$$]-\infty, \infty[$$

$$[0, \infty[$$

## 计算机代写|计算机图形学代写computer graphics代考|Units of Angular Measurement

$$\frac{\pi}{2}[\mathrm{rad}] \equiv 90^{\circ}, \quad \pi[\mathrm{rad}] \equiv 180^{\circ} \frac{3 \pi}{2}[\mathrm{rad}] \equiv 270^{\circ}, \quad 2 \pi[\mathrm{rad}]$$

$$\frac{\pi x^{\circ}}{180}[\mathrm{rad}] .$$

$$\frac{180 x}{\pi} \text { [degrees]. }$$

$$\mathrm{e}^\theta=1+\frac{\theta^1}{1 !}+\frac{\theta^2}{2 !}+\frac{\theta^3}{3 !}+\frac{\theta^4}{4 !}+\frac{\theta^5}{5 !}+\frac{\theta^6}{6 !}+\frac{\theta^7}{7 !}+\frac{\theta^8}{8 !}+\frac{\theta^9}{9 !}+$$

## 有限元方法代写

tatistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

Days
Hours
Minutes
Seconds

# 15% OFF

## On All Tickets

Don’t hesitate and buy tickets today – All tickets are at a special price until 15.08.2021. Hope to see you there :)