数学代写|复分析作业代写Complex function代考|Stereographic Formulae

Doug I. Jones

Doug I. Jones

Lorem ipsum dolor sit amet, cons the all tetur adiscing elit

如果你也在 怎样代写复分析Complex function这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

复分析是一个从复数到复数的函数。换句话说,它是一个以复数的一个子集为域,以复数为子域的函数。复数函数通常应该有一个包含复数平面的非空开放子集的域。

couryes-lab™ 为您的留学生涯保驾护航 在代写复分析Complex function方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写复分析Complex function代写方面经验极为丰富,各种代写复分析Complex function相关的作业也就用不着说。

我们提供的复分析Complex function及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础

数学代写|复分析作业代写Complex function代考|Stereographic Formulae

In this subsection we derive explicit formulae connecting the coordinates of a point $z$ in $\mathbb{C}$ and its stereographic projection $\widehat{z}$ on $\Sigma$. These formulae will prove useful in investigating non-Euclidean geometry, but if you don’t plan to study Chapter 6 then you should feel free to skip this subsection.

To begin with, let us describe $z$ with Cartesian coordinates: $z=x+i y$. Similarly, let $(X, Y, Z)$ be the Cartesian coordinates of $\widehat{z}$ on $\Sigma$; here the $X$ – and $Y$-axes are chosen to coincide with the $x$ – and $y$-axes of $\mathbb{C}$, so that the positive $Z$-axis passes through $\mathrm{N}$. To make yourself comfortable with these coordinates, check the following facts: the equation of $\Sigma$ is $X^2+Y^2+Z^2=1$, the coordinates of $N$ are $(0,0,1)$, and similarly $S=(0,0,-1), 1=(1,0,0), i=(0,1,0)$, etc.

Now let us find the formula for the stereographic projection $z=x+$ iy of the point $\widehat{z}$ on $\Sigma$ in terms of the coordinates $(X, Y, Z)$ of $\widehat{z}$. Let $z^{\prime}=X+i Y$ be the foot of the perpendicular from $\widehat{z}$ to $\mathbb{C}$. Clearly, the desired point $z$ is in the same direction as $z^{\prime}$, so
$$
z=\frac{|z|}{\left|z^{\prime}\right|} z^{\prime}
$$
Now look at [3.23a], which shows the vertical cross section of $\Sigma$ and $\mathbb{C}$ taken through $\mathrm{N}$ and $\widehat{z}$; note that this vertical plane necessarily also contains $z^{\prime}$ and $z$. From the similarity of the illustrated right triangles with hypotenuses $\mathrm{N} \widehat{\mathrm{z}}$ and $\mathrm{Nz}$, we immediately deduce [exercise] that
$$
\frac{|z|}{\left|z^{\prime}\right|}=\frac{1}{1-Z^{\prime}}
$$
and so we obtain our first stereographic formula:
$$
x+i y=\frac{X+i \gamma}{1-Z}
$$
Let us now invert this formula to find the coordinates of $\hat{z}$ in terms of those of z. Since [exercise]
$$
|z|^2=\frac{1+Z}{1-Z}
$$
we obtain [exercise]
$$
X+i Y=\frac{2 z}{1+|z|^2}=\frac{2 x+i 2 y}{1+x^2+y^2}, \quad \text { and } \quad Z=\frac{|z|^2-1}{|z|^2+1}
$$

数学代写|复分析作业代写Complex function代考|Preservation of Circles, Angles, and Symmetry

From (3.3) we know that a general Möbius transformation $M(z)=\frac{a z+b}{c z+d}$ can be decomposed into the following sequence of more elementary transformations: a translation, complex inversion, a rotation, an expansion, and a second translation. Since each of these transformations preserves circles, angles, and symmetry, we immediately deduce the following fundamental results:

  • Möbius transformations map circles to circles. ${ }^9$
  • Möbius transformations are conformal.
  • If two points are symmetric with respect to a circle, then their images under a Möbius transformation are symmetric with respect to the image circle. This is called the “Symmetry Principle”.

We know that a circle $\mathrm{C}$ will map to a circle-of course lines are now included as “circles”-but what will happen to the disc bounded by C? First we give a useful way of thinking about this disc. Imagine yourself walking round $\mathrm{C}$ moving counterclockwise; your motion gives $\mathrm{C}$ what is a called a positive sense or orientation. Of the two regions into which this positively oriented circle divides the plane, the disc may now be identified as the one lying to your left.

Now consider the effect of the four transformations in (3.3) on the disc and on the positively oriented circle bounding it. Translations, rotations, and expansions all preserve the orientation of $C$ and map the interior of $C$ to the interior of the image $\widetilde{\mathrm{C}}$ of $\mathrm{C}$. However, the effect of complex inversion on $\mathrm{C}$ depends on whether or not $\mathrm{C}$ contains the origin. If $\mathrm{C}$ does not contain the origin, then $\widetilde{C}$ has the same orientation as $\mathrm{C}$, and the interior of $\mathrm{C}$ is mapped to the interior of $\widetilde{\mathrm{C}}$. This is easily understood by looking at [3.24].

If $\mathrm{C}$ does contain the origin then $\widetilde{\mathrm{C}}$ has the opposite orientation and the interior of $\mathrm{C}$ is mapped to the exterior of $\widetilde{\mathrm{C}}$. If $\mathrm{C}$ passes through the origin then its interior is mapped to the half-plane lying to the left of the oriented line $\widetilde{\mathrm{C}}$. See [3.25].

复分析代写

数学代写|复分析作业代写Complex function代考|Stereographic Formulae

在本小节中,我们推导出连接点坐标的显式公式 $z$ 在 $\mathbb{C}$ 其立体投影 $\hat{z}$ 在 $\Sigma$. 这些公式将证明对研究非欧几里德几 何很有用,但如果您不打算学习第 6 章,则可以跳过本 小节。
首先,让我们描述一下 $z$ 笛卡尔坐标: $z=x+i y$. 同 样,让 $(X, Y, Z)$ 是笛卡尔坐标 $\hat{z}$ 在 $\Sigma$; 这里的 $X$ – 和 $Y$ 选择的轴与 $x$-和 $y$-轴 $\mathbb{C}$, 所以正 $Z$ —轴通过 $\mathrm{N}$. 为了使 自己对这些坐标感到满意,请检查以下事实: $\Sigma$ 是 $X^2+Y^2+Z^2=1$, 的坐标 $N$ 是 $(0,0,1)$, 同样地 $S=(0,0,-1), 1=(1,0,0), i=(0,1,0)$ ,ETC。
现在让我们找出立体投影的公式 $z=x+$ 我的观点 $\hat{z}$ 在 $\Sigma$ 在坐标方面 $(X, Y, Z)$ 的 $\hat{z}$. 让 $z^{\prime}=X+i Y$ 是垂线的 脚 $\hat{z}$ 到 C. 显然,所需的点 $z$ 方向与 $z^{\prime}$ ,所以
$$
z=\frac{|z|}{\left|z^{\prime}\right|} z^{\prime}
$$
现在看 [3.23a],它显示了垂直截面 $\Sigma$ 和 $\mathbb{C}$ 通过 $\mathrm{N}$ 和 $\hat{z}$; 请 注意,此垂直平面也必然包含 $z^{\prime}$ 和 $z$. 从图示的直角三角 形与斜边的相似性 $\mathrm{N} \hat{z}$ 和 $\mathrm{Nz}$ ,我们立即推断出[练习]
$$
\frac{|z|}{\left|z^{\prime}\right|}=\frac{1}{1-Z^{\prime}}
$$
所以我们得到了我们的第一个立体公式:
$$
x+i y=\frac{X+i \gamma}{1-Z}
$$
现在让我们反转这个公式来找到坐标 $\hat{z}$ 就那些 $\mathrm{z}$ 而言。由 于[练习]
$$
|z|^2=\frac{1+Z}{1-Z}
$$
我们获得[练习]
$$
X+i Y=\frac{2 z}{1+|z|^2}=\frac{2 x+i 2 y}{1+x^2+y^2}, \quad \text { and } \quad Z
$$

数学代写|复分析作业代写Complex function代考|Preservation of Circles, Angles, and Symmetry

从 (3.3) 我们知道一般的莫比乌斯变换 $M(z)=\frac{a z+b}{c z+d}$ 可 以分解为以下更基本的变换序列: 平移、复数反转、旋 转、展开和二次平移。由于这些变换中的每一个都保留 了圆、角和对称性,我们立即推导出以下基本结果:

  • 莫比乌斯变换将圆映射到圆。 ${ }^9$
  • 莫比乌斯变换是共形的。
  • 如果两点关于圆对称,则它们在莫比乌斯变换下 的像关于像圆对称。这被称为“对称原理”。
    我们知道一个圆C将映射到一个圆圈一一当然线现在被 包含为“圆圈”一一但是以 C 为界的圆盘会发生什么? 首 先,我们给出一种思考这张光盘的有用方法。想象自己 四处走动 $\mathrm{C}$ 逆时针移动; 你的议案给 $\mathrm{C}$ 什么叫做稆极的 感觉或方向。在这个正向圆将平面划分为两个区域中, 现在可以将圆盘识别为位于您左侧的那个。
    现在考虑 (3.3) 中的四个变换对圆盘和包围它的正向圆的 影响。平移、旋转和扩展都保持方向 $C$ 并绘制内部图 $C$ 到图像的内部 $\widetilde{\mathrm{C}}$ 的C. 然而,复数反演对C取决于有没有 C包含原点。如果C不包含原点,那么 $\widetilde{C}$ 具有相同的方向 $\mathrm{C}$, 和内部 $\mathrm{C}$ 映射到的内部 $\widetilde{\mathrm{C}}$. 通过查看 [3.24] 可以很容 易地理解这一点。
    如果C那么确实包含原点 $\widetilde{\mathrm{C}}$ 有相反的方向和内部C被映射 到外部 $\widetilde{C}$. 如果 $\mathrm{C}$ 通过原点然后它的内部被映射到位于定 向线左侧的半平面 $\widetilde{\mathrm{C}}$. 见[3.25]。

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

Days
Hours
Minutes
Seconds

hurry up

15% OFF

On All Tickets

Don’t hesitate and buy tickets today – All tickets are at a special price until 15.08.2021. Hope to see you there :)