# 数学代写|交换代数代写commutative algebra代考|MAST90025

#### Doug I. Jones

Lorem ipsum dolor sit amet, cons the all tetur adiscing elit

statistics-lab™ 为您的留学生涯保驾护航 在代写交换代数commutative algebra方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写交换代数commutative algebra代写方面经验极为丰富，各种代写交换代数commutative algebra相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础
couryes™为您提供可以保分的包课服务

## 数学代写|交换代数代写commutative algebra代考|Dedekind-Mertens Lemma

D First of all, notice that the products $f_i g_j$ are the coefficients of the polynomial $f(Y) g(X)$. Similarly, for some indeterminates $Y_0, \ldots, Y_m$, the content of the polynomial $f\left(Y_0\right) \cdots f\left(Y_m\right) g(X)$ is equal to $c(f)^{m+1} \mathrm{c}(g)$.

Let $h=f g$. Imagine that in the ring $\mathbf{B}=\mathbf{A}\left[X, Y_0, \ldots, Y_m\right]$ we are able to show the membership of the polynomial $f\left(Y_0\right) \cdots f\left(Y_m\right) g(X)$ in the ideal
$$\sum_{j=0}^m\left(h\left(Y_j\right) \prod_{k, k \neq j}\left(f\left(Y_k\right)\right\rangle\right) .$$
We would immediately deduce that $\mathrm{c}(f)^{m+1} \mathrm{c}(g) \subseteq \mathrm{c}(f)^m \mathrm{c}(h)$.
This is more or less what is going to happen. We get rid of the denominators in Lagrange’s interpolation formula (we need at least $1+\operatorname{deg} g$ interpolation points):
In the ring $\mathbf{B}$, by letting $\Delta=\prod_{j \neq k}\left(Y_j-Y_k\right)$, we get:
$$\Delta \cdot g(X) \in \sum_{j=0}^m\left\langle g\left(Y_j\right)\right\rangle .$$
Thus by multiplying by $f\left(Y_0\right) \cdots f\left(Y_m\right)$ :
$$\Delta \cdot f\left(Y_0\right) \cdots f\left(Y_m\right) \cdot g(X) \in \sum_{j=0}^m h\left(Y_j\right) \prod_{k, k \neq j}\left\langle f\left(Y_k\right)\right\rangle .$$
If we show that for any $Q \in \mathbf{B}$ we have $\mathrm{c}(Q)=\mathrm{c}(\Delta \cdot Q)$, the previous membership gives $\mathrm{c}(f)^{m+1} \mathrm{c}(g) \subseteq \mathrm{c}(f)^m \mathrm{c}(h)$.
Note that $\mathrm{c}\left(Y_i Q\right)=\mathrm{c}(Q)$ and especially that
$$\mathrm{c}\left(Q\left(Y_0 \pm Y_1, Y_1, \ldots, Y_m\right)\right) \subseteq \mathrm{c}\left(Q\left(Y_0, Y_1, \ldots, Y_m\right)\right) .$$
Therefore, by putting $Y_0=\left(Y_0 \pm Y_1\right) \mp Y_1, \mathrm{c}\left(Q\left(Y_0 \pm Y_1, Y_1, \ldots, Y_m\right)\right)=\mathrm{c}(Q)$. The following polynomials thus all have the same content:
$$\begin{gathered} Q, Q\left(Y_0+Y_1, Y_1, \ldots, Y_m\right), Y_0 Q\left(Y_0+Y_1, Y_1, \ldots, Y_m\right), \ \left(Y_0-Y_1\right) Q\left(Y_0, Y_1, \ldots, Y_m\right) . \end{gathered}$$

## 数学代写|交换代数代写commutative algebra代考|The Universal Splitting Algebra for a Monic Polynomial

Disclaimer In a context where we manipulate algebras, it is sometimes preferable to keep to the intuition that we want to have a field as the base ring, even if it is only a commutative ring. In which case we choose to give a name such as $\mathbf{k}$ to the base ring. This is what we are going to do in this section dedicated to the universal splitting algebra.
When we are truly dealing with a discrete field, we will use $\mathbf{K}$ instead.
We now proceed to the inverse operation to that which passes from the polynomial ring to the subring of symmetric polynomials.

In the presence of a monic polynomial $f=T^n+\sum_{k=1}^n(-1)^k s_k T^{n-k} \in \mathbf{k}[T]$ over a ring $\mathbf{k}$, we want to have at our disposal an extension of $\mathbf{k}$ where the polynomial is decomposed into linear factors. Such an extension can be constructed in a purely formal way. The result is called the universal splitting algebra.
4.1 Definition and notation Let $f=T^n+\sum_{k=1}^n(-1)^k s_k T^{n-k} \in \mathbf{k}[T]$ be a monic polynomial of degree $n$. We denote by Adu $\mathbf{k}{\mathbf{k}, f}$ the universal splitting algebra of $f$ over k defined as follows $$\mathrm{Adu}{\mathbf{k}, f}=\mathbf{k}\left[X_1, \ldots, X_n\right] / \mathcal{J}(f)=\mathbf{k}\left[x_1, \ldots, x_n\right]$$
where $\mathcal{J}(f)$ is the ideal of symmetric relators necessary to identify $\prod_{i=1}^n\left(T-x_i\right)$ with $f(T)$ in the quotient. Precisely, if $S_1, S_2, \ldots, S_n$ are the elementary symmetric functions of the $X_i$ ‘s, the ideal $\mathcal{J}(f)$ is given by
$$\mathcal{J}(f)=\left\langle S_1-s_1, S_2-s_2, \ldots, S_n-s_n\right\rangle$$
The universal splitting algebra $\mathbf{A}=\mathrm{Adu}_{\mathbf{k}, f}$ can be characterized by the following property.
4.2 Fact (Universal decomposition algebra, characteristic property)

1. Let $\mathbf{C}$ be a $\mathbf{k}$-algebra such that $f(T)$ is decomposed into a product of factors $T-z_i$. Then, there exists a unique homomorphism of $\mathbf{k}$-algebras of $\mathbf{A}$ to $\mathbf{C}$ which sends the $x_i$ ‘s to the $z_i$ ‘s.
2. This characterizes the universal splitting algebra $\mathbf{A}=\mathrm{Adu}_{\mathbf{k}, f}$, up to unique isomorphism.
3. Moreover, if $\mathbf{C}$ is generated (as a $\mathbf{k}$-algebra) by the $z_i$ ‘s, the universal splitting algebra is isomorphic to a quotient of $\mathbf{A}$.

# 交换代数代考

## 数学代写|交换代数代写交换代数代考|Dedekind-Mertens引理

$$\sum_{j=0}^m\left(h\left(Y_j\right) \prod_{k, k \neq j}\left(f\left(Y_k\right)\right\rangle\right) .$$我们马上就能推断出来 $\mathrm{c}(f)^{m+1} \mathrm{c}(g) \subseteq \mathrm{c}(f)^m \mathrm{c}(h)$这或多或少就是将要发生的事情。我们去掉了拉格朗日插值公式中的分母(我们至少需要 $1+\operatorname{deg} g$ 插补点):

$$\Delta \cdot g(X) \in \sum_{j=0}^m\left\langle g\left(Y_j\right)\right\rangle .$$

$$\Delta \cdot f\left(Y_0\right) \cdots f\left(Y_m\right) \cdot g(X) \in \sum_{j=0}^m h\left(Y_j\right) \prod_{k, k \neq j}\left\langle f\left(Y_k\right)\right\rangle .$$
$Q \in \mathbf{B}$ 我们有 $\mathrm{c}(Q)=\mathrm{c}(\Delta \cdot Q)$，以前的会员给予 $\mathrm{c}(f)^{m+1} \mathrm{c}(g) \subseteq \mathrm{c}(f)^m \mathrm{c}(h)$.

$$\mathrm{c}\left(Q\left(Y_0 \pm Y_1, Y_1, \ldots, Y_m\right)\right) \subseteq \mathrm{c}\left(Q\left(Y_0, Y_1, \ldots, Y_m\right)\right) .$$

$$\begin{gathered} Q, Q\left(Y_0+Y_1, Y_1, \ldots, Y_m\right), Y_0 Q\left(Y_0+Y_1, Y_1, \ldots, Y_m\right), \ \left(Y_0-Y_1\right) Q\left(Y_0, Y_1, \ldots, Y_m\right) . \end{gathered}$$

## 数学代写|交换代数代写交换代数代考|一个Monic多项式的通用分裂代数

4.1定义和符号Let $f=T^n+\sum_{k=1}^n(-1)^k s_k T^{n-k} \in \mathbf{k}[T]$ 是次的一多项式 $n$。我们用阿杜表示 $\mathbf{k}{\mathbf{k}, f}$ 的普适分裂代数 $f$ 除以k，定义如下 $$\mathrm{Adu}{\mathbf{k}, f}=\mathbf{k}\left[X_1, \ldots, X_n\right] / \mathcal{J}(f)=\mathbf{k}\left[x_1, \ldots, x_n\right]$$
where $\mathcal{J}(f)$ 是否有必要确定理想的对称关系式 $\prod_{i=1}^n\left(T-x_i\right)$ 用 $f(T)$ 在商中。没错，如果 $S_1, S_2, \ldots, S_n$ 初等对称函数 $X_i$ ’s，理想 $\mathcal{J}(f)$
$$\mathcal{J}(f)=\left\langle S_1-s_1, S_2-s_2, \ldots, S_n-s_n\right\rangle$$

1. 设$\mathbf{C}$为$\mathbf{k}$ -代数，使$f(T)$分解为因子$T-z_i$的乘积。然后，$\mathbf{A}$到$\mathbf{C}$的$\mathbf{k}$ -代数存在一个唯一同态，它将$x_i$ ‘s发送到$z_i$ ‘s。
2. 这表征了普遍分裂代数$\mathbf{A}=\mathrm{Adu}_{\mathbf{k}, f}$，直到唯一同态。

## 有限元方法代写

tatistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

Days
Hours
Minutes
Seconds

# 15% OFF

## On All Tickets

Don’t hesitate and buy tickets today – All tickets are at a special price until 15.08.2021. Hope to see you there :)