# 数学代写|组合优化代写Combinatorial optimization代考|CSC205

#### Doug I. Jones

Lorem ipsum dolor sit amet, cons the all tetur adiscing elit

couryes-lab™ 为您的留学生涯保驾护航 在代写组合优化Combinatorial optimization方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写组合优化Combinatorial optimization代写方面经验极为丰富，各种代写组合优化Combinatorial optimization相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础
couryes™为您提供可以保分的包课服务

## 数学代写|组合优化代写Combinatorial optimization代考|Initial Feasible Basis

How do we find the initial feasible basis? A popular way is to introduce artificial variables $y=\left(y_1, y_2, \ldots, y_m\right)^T$ and solve the following LP:
\begin{aligned} \max & w=-e y \ \text { subject to } & A x+I_m y=b \ & x \geq 0, y \geq 0, \end{aligned}
where $e=(1,1, \ldots, 1)$ and $I_m$ is the identity matrix of order $m$. In this LP, those artificial variables form a feasible basis. There are three possible outcomes resulting from solving this LP.
(1) The cost function value $w$ is reduced to 0 and all artificial variables are removed from the feasible basis. In this case, the final feasible basis can be used as initial feasible basis in original LP.
(2) The cost function reaches a negative maximum value. In this case, the original LP has no feasible solution.
(3) The cost function value $w$ is reduced to 0 ; however, there is an artificial variable $y_i$ in the feasible basis. Let $b_i$ and $a_{i j}$ denote coefficients of constraints at the last moment. In this case, we must have $y_i=b_i=0$; otherwise, $w=e y>0$. Note that there exists a variable $x_j$ such that $a_{i j} \neq 0$ since $\operatorname{rank}(A)=m$. This means that we may take $a_{i j}$ as pivot element to move $y_i$ out from feasible basis and to move in $x_j$, preserving cost function value 0 . When all artificial variables are moved out from the feasible basis, this case is reduced to case (1).

## 数学代写|组合优化代写Combinatorial optimization代考|Primal-Dual Algorithm

In this section, we introduce an algorithm motivated from the complementary slackness condition. Consider the following two LPs:
\begin{aligned} (P): \quad \max \quad z & =c x \ \text { subject to } A x & =b \ x & \geq 0, \end{aligned}
and
$$\begin{array}{r} (D): \quad \min w=y b \ \text { subject to } y A \geq c, \end{array}$$

where $c$ is an $n$-dimensional row vector, $b$ is an $m$-dimensional column vector, and $M$ is an $m \times n$ matrix with $\operatorname{rank}(A)=m$. Then the complementary slackness condition can be described equivalently as the following:
$$y a_j>c_j \Rightarrow x_j=0,$$
or
$$x_j>0 \Rightarrow y a_j=c_j$$
where $a_j$ is the $j$ th column of $A$. Let $y$ be a dual-feasible solution. Denote $J(y)=\left{i \mid y a_j=c_j\right}$. Then, $y$ is optimal if and only if there exists a primalfeasible solution $x$ satisfying the complementary slackness condition with $y$, i.e., the following LP has optimal value:
\begin{aligned} (R P): \quad \max & -\sum_{i=1}^m u_i \ \text { subject to } & \sum_{j \in J(y)} a_{i j} x_j+u_i=b_i \text { for } i=1,2, \ldots, m, \ & x_j \geq 0 \text { for } j \in J(y), \ & u_i \geq 0 \text { for } i=1,2, \ldots, m . \end{aligned}

# 组合优化代考

## 数学代写|组合优化代写Combinatorial optimization代考|Initial Feasible Basis

(1) 成本函数值 $w$ 降为 0 ，所有的人工变量都从可行的基 础上去除。在这种情况下，最终可行基可以作为原始 LP 中的初始可行基。
(2)成本函数达到负最大值。在这种情况下，原LP无可行 解。
(3) 成本函数值 $w$ 降为 0 ；然而，在可行的基础上有一个 人为变量 $y_i$ 让 $b_i$ 和 $a_{i j}$ 表示最后时刻的约束系数。在这种 情况下，我们必须有 $y_i=b_i=0$ ；否则， $w=e y>0$ 。请注意，存在一个变量 $x_j$ 使得 $a_{i j} \neq 0$ 元素来移动 $y_i$ 从可行的基础上移出并移入 $x_j$ ，保留成本 函数值 0 。当所有的人工变量都从可行的基础上移出 后，这种情况就简化为情况 (1)。

## 数学代写|组合优化代写Combinatorial optimization代考|Primal-Dual Algorithm

$(P): \quad \max z=c x$ subject to $A x \quad=b x \geq$

$(D): \quad \min w=y b$ subject to $y A \geq c$,

$$y a_j>c_j \Rightarrow x_j=0,$$
or
$$x_j>0 \Rightarrow y a_j=c_j$$

J(y)=Vleft{i Imid y a_j=c_jlright $} y$ 是最优的当且仅当存在一 个原始可行解 $x$ 满足与 $y$ 的互补松他条件，即以下 LP 具 有最优值:
$$(R P): \quad \max -\sum_{i=1}^m u_i \text { subject to } \quad \sum_{j \in J(y)} a_{i j} x_j$$

## 有限元方法代写

tatistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

Days
Hours
Minutes
Seconds

# 15% OFF

## On All Tickets

Don’t hesitate and buy tickets today – All tickets are at a special price until 15.08.2021. Hope to see you there :)