# 统计代写|生物统计分析代写Biological statistic analysis代考|BIOL220

#### Doug I. Jones

Lorem ipsum dolor sit amet, cons the all tetur adiscing elit

couryes-lab™ 为您的留学生涯保驾护航 在代写生物统计分析Biological statistic analysis方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写生物统计分析Biological statistic analysis代写方面经验极为丰富，各种生物统计分析Biological statistic analysis相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• Advanced Probability Theory 高等概率论
• Advanced Mathematical Statistics 高等数理统计学
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础
couryes™为您提供可以保分的包课服务

## 统计代写|生物统计分析代写Biological statistic analysis代考|An Example with Sub-sampling

In biological experimentation, experimental units are frequently sub-sampled, and the data contain several response values for each experimental unit. In our example, we might still randomize the drug treatments on the mice, but take four blood samples instead of one from each mouse and measure them independently. Then, the mice are still the experimental units for the treatment, but the blood samples now provide the response units. The Hasse diagrams in Fig. $4.5$ illustrate this design.

The treatment structure is identical to our previous example, and contains Drug as its only relevant factor. The unit structure now contains a new factor (Sample) with 128 levels, one for each measured enzyme level. It is the response factor that provides the observations. Since each sample belongs to one mouse, and each mouse has several samples, the factor (Sample) is nested in (Mouse). The observations are then partitioned first into 32 groups-one per mouse-and further into 128-one per sample per mouse. For the experiment structure, we randomize Drug on (Mouse), and arrive at the diagram in Fig. 4.5C.

The $F$-test for the drug effect again uses the mean squares for Drug on 3 degrees of freedom. Using our rule, we find that (Mouse) – and not (Sample) – is the experimental unit factor that provides the estimate of the variance for the $F$-denominator on 28 degrees of freedom. As far as this test is concerned, the 128 samples are technical replicates or pseudo-replicates. They do not reflect the biological variation against which we need to test the differences in enzyme levels for the four drugs, since drugs are randomized on mice and not on samples.

## 统计代写|生物统计分析代写Biological statistic analysis代考|The Linear Model

For a completely randomized design with $k$ treatment groups, we can write each datum $y_{i j}$ explicitly as the corresponding treatment group mean and a random deviation from this mean:
$$y_{i j}=\mu_i+e_{i j}=\mu+\alpha_i+e_{i j} .$$
The first model is called a cell means model, while the second, equivalent, model is a parametric model. If the treatments had no effect, then all $\alpha_i-\mu_i-\mu$ are zero and the data are fully described by the grand mean $\mu$ and the residuals $e_{i j}$. Thus, the parameters $\alpha_i$ measure the systematic difference of each treatment from the grand mean and are independent of the experimental units.

It is crucial for an analysis that the linear model fully reflects the structure of the experiment. The Hasse diagrams allow us to derive an appropriate model for any experimental design with comparative ease. For our example, the diagram in Fig.4.4C has three factors: M, Drug, and (Mouse), and these are reflected in the three sets of parameters $\mu, \alpha_i$, and $e_{i j}$. Note that there are four parameters $\alpha_i$ to produce the four group means, but given three and the grand mean $\mu$, the fourth parameter can be calculated; thus, there are four parameters $\alpha_i$, but only three can be independently estimated given $\mu$, as reflected by the three degrees of freedom for Drug. Further, the $e_{i j}$ are 32 random variables, and this is reflected in the fact that (Mouse) is a random factor. Given estimates for $\mu$ and $\alpha_i$, the $e_{i j}$ in each of the four groups must sum to zero and only 28 values are independent.
For the sub-sampling example in Fig.4.5, the linear model is
$$y_{i j k}=\mu+\alpha_i+m_{i j}+e_{i j k} \text {, }$$ where $m_{i j}$ is the average deviation of measurements of mouse $j$ in treatment group $i$ from the treatment group mean, and $e_{i j k}$ are the deviations of individual measurements of a mouse to its average. These terms correspond exactly to $\mathbf{M}$, Drug, (Mouse), and (Sample).

# 生物统计分析代考

## 统计代写|生物统计分析代写生物统计分析代考|线性模型

$$y_{i j}=\mu_i+e_{i j}=\mu+\alpha_i+e_{i j} .$$

$$y_{i j k}=\mu+\alpha_i+m_{i j}+e_{i j k} \text {, }$$，其中$m_{i j}$为处理组$i$中小鼠$j$的测量值与处理组平均值的平均偏差，$e_{i j k}$为单个小鼠测量值与其平均值的偏差。这些术语对应$\mathbf{M}$，药物，(老鼠)和(样本)。

## 有限元方法代写

tatistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

Days
Hours
Minutes
Seconds

# 15% OFF

## On All Tickets

Don’t hesitate and buy tickets today – All tickets are at a special price until 15.08.2021. Hope to see you there :)