#### Doug I. Jones

Lorem ipsum dolor sit amet, cons the all tetur adiscing elit

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础
couryes™为您提供可以保分的包课服务

Via the inner product, one can relate with a linear map another linear map (called the adjoint). On a vector space over the reals, the adjoint of multiplication with a matrix $A$ corresponds to multiplication with the transpose $A^T$ of the matrix $A$. Over the complex numbers, it also involves taking a complex conjugate. We now provide you with the definition.

Let $\left(V,\langle\cdot, \cdot\rangle_V\right)$ and $\left(W,\langle\cdot, \cdot\rangle_W\right)$ be inner product spaces, and let $T: V \rightarrow W$ be linear. We call a map $T^{\star}: W \rightarrow V$ the adjoint of $T$ if
$$\langle T(\mathbf{v}), \mathbf{w}\rangle_W=\left\langle\mathbf{v}, T^{\star}(\mathbf{w})\right\rangle_V \text { for all } \mathbf{v} \in V, \mathbf{w} \in W .$$
Notice that the adjoint is unique. Indeed if $S$ is another adjoint for $T$, we get that $\left\langle\mathbf{v}, T^{\star}(\mathbf{w})\right\rangle_V=\langle\mathbf{v}, S(\mathbf{w})\rangle_V$ for all $\mathbf{v}, \mathbf{w}$. Choosing $\mathbf{v}=T^{\star}(\mathbf{w})-S(\mathbf{w})$ yields
$\left\langle T^{\star}(\mathbf{w})-S(\mathbf{w}), T^{\star}(\mathbf{w})-S(\mathbf{w})\right\rangle_V=0$,
and thus $T^{\star}(\mathbf{w})-S(\mathbf{w})=0$. As this holds for all $\mathbf{w}$, we must have that $T^{\star}=S$.
Lemma 5.3.1 If $T: V \rightarrow W$ is an isometry, then $T^{\star} T=i d_V$.
Proof. Since $T$ is an isometry, we have that
$$\langle T(\mathbf{v}), T(\hat{\mathbf{v}})\rangle_W=\langle\mathbf{v}, \hat{\mathbf{v}}\rangle_V \text { for all } \mathbf{v}, \hat{\mathbf{v}} \in V .$$
But then, we get that
$$\left\langle T^{\star} T(\mathbf{v}), \hat{\mathbf{v}}\right\rangle_W=\langle\mathbf{v}, \hat{\mathbf{v}}\rangle_V \text { for all } \mathbf{v}, \hat{\mathbf{v}} \in V,$$
or equivalently,
$$\left\langle T^{\star} T(\mathbf{v})-\mathbf{v}, \hat{\mathbf{v}}\right\rangle_W=\langle\mathbf{v}, \hat{\mathbf{v}}\rangle_V \text { for all } \mathbf{v}, \hat{\mathbf{v}} \in V .$$
Letting $\dot{\mathbf{v}}=T^{\star} T(\mathbf{v})-\mathbf{v}$, this yields $T^{\star} T(\mathbf{v})-\mathbf{v}=0$ for all $\mathbf{v} \in V$. Thus $T^{\star} T=i d_V$.

## 数学代写|高等线性代数代写Advanced Linear Algebra代考|Unitary matrices, QR, and Schur triangularization

Unitary transformations are ones where a pair of vectors is mapped to a new pair of vectors without changing their lengths or the angle between them. Thus, one can think of a unitary transformation as viewing the vector space from a different viewpoint. Using unitary transformations (represented by unitary matrices) can be used to put general transformations in a simpler form. These simpler forms give rise to $\mathrm{QR}$ and Schur triangular decompositions.
Let $\mathbb{F}=\mathbb{R}$ or $\mathbb{C}$. We call a matrix $A \in \mathbb{F}^{n \times m}$ an isometry if $A^* A=I_m$.
Notice that necessarily we need to have that $n \geq m$. The equation $A^* A$ can also be interpreted as that the columns of $A$ are orthonormal. When $A \in \mathbb{F}^{n \times n}$ is square, then automatically $A^* A=I_n$ implies that $A A^*=I_n$. Such a matrix is called unitary. Thus a square isometry is a unitary. From the Gram-Schmidt process we can deduce the following.

Theorem 5.4.1 (QR factorization) Let $A \in \mathbb{F}^{n \times m}$ with $n \geq m$. Then there exists an isometry $Q \in \mathbb{F}^{n \times m}$ and an upper triangular matrix $R \in \mathbb{F}^{m \times m}$ with nonnegative entries on the diagonal, so that
$$A=Q R .$$
If $A$ has rank equal to $m$, then the diagonal entries of $R$ are positive, and $R$ is invertible. If $n=m$, then $Q$ is unitary.

Proof. First we consider the case when $\operatorname{rank} A=m$. Let $\mathbf{v}1, \ldots, \mathbf{v}_m$ denote the columns of $A$, and let $\mathbf{z}_1, \ldots, \mathbf{z}_m$ denote the resulting vectors when we apply the Gram-Schmidt process to $\mathbf{v}_1, \ldots, \mathbf{v}_m$ as in Theorem 5.2.3. Let now $Q$ be the matrix with columns $\frac{\mathbf{z}_1}{\left|\mathbf{z}_1\right|}, \ldots, \frac{\mathbf{z}_m}{\left|\mathbf{z}_m\right|}$. Then $Q^* Q=I_m$ as the columns of $Q$ are orthonormal. Moreover, we have that $$\mathbf{v}_k=\left|\mathbf{z}_k\right| \frac{\mathbf{z}_k}{\left|\mathbf{z}_k\right|}+\sum{j=1}^{k-1} r_{k j} \mathbf{z}j,$$ for some $r{k j} \in \mathbb{F}, k>j$. Putting $r_{k k}=\left|\mathbf{z}k\right|$, and $r{k j}=0, k<j$, and letting $R=\left(r_{k j}\right)_{k, j=1}^m$, we get the desired upper triangular matrix $R$ yielding $A=Q R$.

# 高等线性代数代考

$$\langle T(\mathbf{v}), \mathbf{w}\rangle_W=\left\langle\mathbf{v}, T^{\star}(\mathbf{w})\right\rangle_V \text { for all } \mathbf{v} \in V, \mathbf{w} \in W .$$
，我们称地图$T^{\star}: W \rightarrow V$为$T$的伴随符。注意，伴随符是唯一的。实际上，如果$S$是$T$的另一个伴随词，我们就会得到所有$\mathbf{v}, \mathbf{w}$的$\left\langle\mathbf{v}, T^{\star}(\mathbf{w})\right\rangle_V=\langle\mathbf{v}, S(\mathbf{w})\rangle_V$。选择$\mathbf{v}=T^{\star}(\mathbf{w})-S(\mathbf{w})$会产生
$\left\langle T^{\star}(\mathbf{w})-S(\mathbf{w}), T^{\star}(\mathbf{w})-S(\mathbf{w})\right\rangle_V=0$，
，因此是$T^{\star}(\mathbf{w})-S(\mathbf{w})=0$。因为这对所有$\mathbf{w}$都成立，我们必须有那个$T^{\star}=S$ .

$$\langle T(\mathbf{v}), T(\hat{\mathbf{v}})\rangle_W=\langle\mathbf{v}, \hat{\mathbf{v}}\rangle_V \text { for all } \mathbf{v}, \hat{\mathbf{v}} \in V .$$

$$\left\langle T^{\star} T(\mathbf{v}), \hat{\mathbf{v}}\right\rangle_W=\langle\mathbf{v}, \hat{\mathbf{v}}\rangle_V \text { for all } \mathbf{v}, \hat{\mathbf{v}} \in V,$$

$$\left\langle T^{\star} T(\mathbf{v})-\mathbf{v}, \hat{\mathbf{v}}\right\rangle_W=\langle\mathbf{v}, \hat{\mathbf{v}}\rangle_V \text { for all } \mathbf{v}, \hat{\mathbf{v}} \in V .$$

$$A=Q R .$$

## 有限元方法代写

tatistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

Days
Hours
Minutes
Seconds

# 15% OFF

## On All Tickets

Don’t hesitate and buy tickets today – All tickets are at a special price until 15.08.2021. Hope to see you there :)