金融代写|利率建模代写Interest Rate Modeling代考|MTH5520

Doug I. Jones

Doug I. Jones

Lorem ipsum dolor sit amet, cons the all tetur adiscing elit

如果你也在 怎样代写利率建模Interest Rate Modeling这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

利率模型是指一种对利率的运动和演变进行建模的数学方法。它是一种基于市场风险的单因素短利率模型。瓦西克利率模型常用于经济学中,以确定利率在未来的移动方向。

statistics-lab™ 为您的留学生涯保驾护航 在代写利率建模Interest Rate Modeling方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写利率建模Interest Rate Modeling代写方面经验极为丰富,各种代写利率建模Interest Rate Modeling相关的作业也就用不着说。

我们提供的利率建模Interest Rate Modeling及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
金融代写|利率建模代写Interest Rate Modeling代考|MTH5520

金融代写|利率建模代写Interest Rate Modeling代考|Principal Component Analysis

Having constructed the time series data of forward rates of the seven maturities, shown in Figure 4.4, we now proceed to the estimation of covariance among those forward rates. We then perform PCA with the covariance matrix. The results will shed light on the proper number of random factors that drive the evolution of the forward-rate curve, so that we can determine $n$ and subsequently $\boldsymbol{\sigma}(t, T)$ for the HJM equation.

Let $f\left(n \Delta \tau, n \Delta \tau+T_{i}\right), n=0,1, \ldots, N$ be the forward rates for the seven maturities, $T_{i}, i=1,2, \ldots, 7$, where $\Delta \tau=1 / 12$ represents the observation interval of one month, and $N$ the total number of months. For forward rates of each maturity, $T_{i}, i=1,2, \ldots, 7$, we calculate the change over $\Delta \tau$ :
$$
\begin{aligned}
\Delta f_{n, i}=& f\left((n+1) \Delta \tau,(n+1) \Delta \tau+T_{i}\right) \
&-f\left(n \Delta \tau, n \Delta \tau+T_{i}\right), \quad n=0,1, \ldots, N-1
\end{aligned}
$$
The empirical covariance between $\Delta f_{\cdot, i}$ and $\Delta f_{\cdot, j}$ is, straightforwardly,
$$
\hat{c}{i j}=\frac{1}{N} \sum{n=0}^{N-1}\left(\Delta f_{n, i}-\overline{\Delta f_{i}}\right)\left(\Delta f_{n, j}-\overline{\Delta f_{j}}\right)
$$
where
$$
\overline{\Delta f_{i}}=\frac{1}{N} \sum_{n=0}^{N-1} \Delta f_{n, i}
$$
By performing eigenvalue decomposition on the covariance matrix, $\hat{C}=$ $\left(\hat{c}{i j}\right)$, we obtain $$ \hat{C}=V \Lambda V^{T}=\sum{k=1}^{7} \lambda_{k} \Delta \tau \mathbf{v}{k} \mathbf{v}{k}^{T},
$$
where $\Lambda=\Delta \tau \operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{7}\right)$ and $V=\left(\mathbf{v}{1}, \mathbf{v}{2}, \ldots, \mathbf{v}{7}\right)$ are eigenvalue and eigenvector matrices, respectively, the $\lambda . s$ are put in descending order, that is, $\lambda{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{7}$, and the $\mathbf{v}{k}$ s are normalized, $\left|\mathbf{v}{k}\right|=1$, $k=1, \ldots, 7$. These eigenvectors $\left{\mathbf{v}{1}, \mathbf{v}{2}, \ldots, \mathbf{v}{7}\right}$ are also called principal components of $\hat{C}$. In terms of components, Equation $4.49$ reads as $$ \hat{c}{i j}=\sum_{k=1}^{7} \lambda_{k} \Delta \tau v_{i k} v_{j k} .
$$

金融代写|利率建模代写Interest Rate Modeling代考|A CASE STUDY WITH A TWO-FACTOR MODEL

Yields or forward rates of different maturities are not perfectly correlated, which is made evident in the last section with historical data. In this section, we demonstrate how to parameterize the forward-rate volatility to capture the stylized features of the forward-rate curves that are shaped by principal components.

We consider a two-factor HJM model $(v=2)$ with the following forward-rate volatility components:
$$
\begin{aligned}
&\sigma_{1}(T)=a \mathrm{e}^{-k_{1} T} \
&\sigma_{2}(T)=b\left(1-2 \mathrm{e}^{-k_{2} T}\right)
\end{aligned}
$$
where $a, b, k_{1}$, and $k_{2}$ are constants. To get a “flat” $\sigma_{1}(T)$ and a “tilted” $\sigma_{2}(T)$, we choose $k_{1}$ and $k_{2}$ such that $0 \leq k_{1} \ll 1, k_{1} \ll k_{2}$. Similar to Avellaneda and Laurence (1999), we consider the following choice of parameters
$$
a=0.008, \quad b=0.003, \quad k_{1}=0.0, \quad \text { and } \quad k_{2}=0.35 .
$$

Note that if we take $b=0$, this two-factor model reduces to the Hull-White model, under which forward rates of all maturities are perfectly correlated.
Let us examine the correlation between the three-month (i.e., shortterm) and 30-year (long-term) forward rates. In general, the covariance between forward rates of two maturities, $T$ and $T^{\prime}$, is calculated according to
$$
c\left(T, T^{\prime}\right)=\sigma_{1}(T) \sigma_{1}\left(T^{\prime}\right)+\sigma_{2}(T) \sigma_{2}\left(T^{\prime}\right)
$$
The correlation between forward rates of two maturities is thus
$$
\rho\left(T, T^{\prime}\right)=\frac{c\left(T, T^{\prime}\right)}{\sqrt{c(T, T)} \sqrt{c\left(T^{\prime}, T^{\prime}\right)}} .
$$
Taking $T=0.25$ (three-month) and $T^{\prime}=30$, we have
$$
\begin{aligned}
c(0.25,0.25) &=7.024 \times 10^{-5} \
c(0.25,30) &=5.651 \times 10^{-5} \
c(30,30) &=7.300 \times 10^{-5}
\end{aligned}
$$

金融代写|利率建模代写Interest Rate Modeling代考|MONTE CARLO IMPLEMENTATIONS

We now consider the application of the HJM model to derivatives pricing. As a demonstration, we consider the pricing of a bond option that matures at $T_{0}$ with payoff
$$
X_{T_{0}}=\left(\sum_{i=1}^{n} \Delta T \cdot c \cdot P_{T_{0}}^{T_{i}}+P_{T_{0}}^{T_{n}}-K\right)^{+}
$$
Here $c$ is the coupon rate of the bond, $K$ the strike price of the option, and $T_{i}=T_{0}+i \Delta T$ the cash flow date of the $i$ th coupon of the underlying bond. We call $T_{n}-T_{0}$, the life of the underlying bond beyond $T_{0}$, the tenor of the bond. The value of the option is given by
$$
\begin{aligned}
V_{0} &=E^{\mathrm{Q}}\left[\frac{1}{B_{T_{0}}}\left(\sum_{i=1}^{n} \Delta T \cdot c \cdot P_{T_{0}}^{T_{i}}+P_{T_{0}}^{T_{n}}-K\right)^{+} \mid \mathcal{F}{0}\right] \ &=E^{\mathrm{Q}}\left[\left(\sum{i=1}^{n} \Delta T c \cdot \frac{P_{T_{0}}^{T_{i}}}{B_{T_{0}}}+\frac{P_{T_{0}}^{T_{n}}}{B_{T_{0}}}-\frac{K}{B_{T_{0}}}\right)^{+} \mid \mathcal{F}{0}\right] \end{aligned} $$ where $\mathbb{Q}$ is the risk-neutral measure. Based on Equation 4.25, we have the following expression for the discounted value of zero-coupon bonds: $$ \frac{P{T_{0}}^{T_{i}}}{B_{T_{0}}}=P_{0}^{T_{i}} \exp \left(\int_{0}^{T_{0}}-\frac{1}{2}\left|\boldsymbol{\Sigma}\left(t, T_{i}\right)\right|^{2} \mathrm{~d} t+\boldsymbol{\Sigma}^{\mathrm{T}}\left(t, T_{i}\right) \mathrm{d} \tilde{\mathbf{W}}_{t}\right),
$$ for $i=0,1, \ldots, n$. Taking $i=0$, in particular, we obtain the expression for the reciprocal of the money market account:
$$
\frac{1}{B_{T_{0}}}=P_{0}^{T_{0}} \exp \left(\int_{0}^{T_{0}}-\frac{1}{2}\left|\mathbf{\Sigma}\left(t, T_{0}\right)\right|^{2} \mathrm{~d} t+\mathbf{\Sigma}^{\mathrm{T}}\left(t, T_{0}\right) \mathrm{d} \tilde{\mathbf{W}}_{t}\right)
$$

金融代写|利率建模代写Interest Rate Modeling代考|MTH5520

利率建模代考

金融代写|利率建模代写Interest Rate Modeling代考|Principal Component Analysis

在构建了七种期限远期利率的时间序列数据后,如图 $4.4$ 所示,我们现在着手估计这些远期
利率之间的协方差。然后我们使用协方差矩阵执行 PCA。结果将阐明驱动远期利率曲线演变 的随机因素的适当数量,以便我们可以确定 $n$ 随后 $\sigma(t, T)$ 对于 HJM 方程。
让 $f\left(n \Delta \tau, n \Delta \tau+T_{i}\right), n=0,1, \ldots, N$ 是七个到期日的远期利率,
$T_{i}, i=1,2, \ldots, 7$ ,在哪里 $\Delta \tau=1 / 12$ 表示一个月的观尓间隔,并且 $N$ 总月数。对于每 个期限的远期利率, $T_{i}, i=1,2, \ldots, 7$ ,我们计算变化 $\Delta \tau$ :
$$
\Delta f_{n, i}=f\left((n+1) \Delta \tau,(n+1) \Delta \tau+T_{i}\right) \quad-f\left(n \Delta \tau, n \Delta \tau+T_{i}\right), \quad n=0,1, \ldots, N-1
$$
$$
\hat{c} i j=\frac{1}{N} \sum n=0^{N-1}\left(\Delta f_{n, i}-\overline{\Delta f_{i}}\right)\left(\Delta f_{n, j}-\overline{\Delta f_{j}}\right)
$$
在棴里
$$
\overline{\Delta f_{i}}=\frac{1}{N} \sum_{n=0}^{N-1} \Delta f_{n, i}
$$
通过对协方差矩阵进行特征值分解, $\hat{C}=(\hat{c} i j)$ ,我们获得
$$
\hat{C}=V \Lambda V^{T}=\sum k=1^{7} \lambda_{k} \Delta \tau \mathbf{v} k \mathbf{v} k^{T},
$$
在哪里 $\Lambda=\Delta \tau \operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{7}\right)$ 和 $V=(\mathbf{v} 1, \mathbf{v} 2, \ldots, \mathbf{v} 7)$ 分别是特征值和特征向
量矩阵, $\lambda . s$ 是按降序排列的,也就是说, $\lambda 1 \geq \lambda_{2} \geq \cdots \geq \lambda_{7}$ ,和 $k$ s 归一化,
$|\mathbf{v} k|=1, k=1, \ldots, 7$. 这些特征向量
$\mathrm{~ l l e f t : U m a t h b f { v } { 1 } , ~ I m a t h b f { v } { 2 } , 1 d o t 5 ,}$
方程式 $4.49$ 读作
$$
\hat{c} i j=\sum_{k=1}^{7} \lambda_{k} \Delta \tau v_{i k} v_{j k}
$$

金融代写|利率建模代写Interest Rate Modeling代考|A CASE STUDY WITH A TWO-FACTOR MODEL

不同期限的收益率或远期利率并不完全相关,这一点在最后一节的历史数据中得到了证明。
在本节中,我们将演示如何参数化远期利率波动率,以捕捉由主成分形成的远期利率曲线的
程式化特征。
我们考虑一个两因溸 HJM 模型 $(v=2)$ 具有以下远期汇率波动成分:
$$
\sigma_{1}(T)=a \mathrm{e}^{-k_{1} T} \quad \sigma_{2}(T)=b\left(1-2 \mathrm{e}^{-k_{2} T}\right)
$$
在哪里 $a, b, k_{1}$ ,和 $k_{2}$ 是常数。获得”公寓” $\sigma_{1}(T)$ 和一个”倾斜的” $\sigma_{2}(T)$ ,我们选择 $k_{1}$ 和 $k_{2}$ 这样 $0 \leq k_{1} \ll 1, k_{1} \ll k_{2}$. 与 Avellaneda 和 Laurence (1999) 类似,我们考虑以下参数 选择
$$
a=0.008, \quad b=0.003, \quad k_{1}=0.0, \quad \text { and } \quad k_{2}=0.35 .
$$
请注意,如果我们采取 $b=0$ ,这个双因榡模型简化为 Hull-White 模型,在该模型下,所有 到期日的远期利率完全相关。
让我们检育三个月 (即短期) 和 30 年 (长期) 远期利率之间的相关性。一般来说,两个到 期日的远期利率之间的协方差, $T$ 和 $T^{\prime}$ ,是根据
$$
c\left(T, T^{\prime}\right)=\sigma_{1}(T) \sigma_{1}\left(T^{\prime}\right)+\sigma_{2}(T) \sigma_{2}\left(T^{\prime}\right)
$$
因此,两个到期日的远期利率之间的相关性为
$$
\rho\left(T, T^{\prime}\right)=\frac{c\left(T, T^{\prime}\right)}{\sqrt{c(T, T)} \sqrt{c\left(T^{\prime}, T^{\prime}\right)}}
$$
服用 $T=0.25$ (三个月) 和 $T^{\prime}=30$ ,我们有
$$
c(0.25,0.25)=7.024 \times 10^{-5} c(0.25,30) \quad=5.651 \times 10^{-5} c(30,30)=7.300 \times 10^{-5}
$$

金融代写|利率建模代写Interest Rate Modeling代考|MONTE CARLO IMPLEMENTATIONS

我们现在考虑将 HJM 模型应用于衍生品定价。作为演示,我们考虑到期日为 $T_{0}$ 有回报
$$
X_{T_{0}}=\left(\sum_{i=1}^{n} \Delta T \cdot c \cdot P_{T_{0}}^{T_{i}}+P_{T_{0}}^{T_{n}}-K\right)^{+}
$$
这里 $c$ 是债券的票面利率, $K$ 期权的执行价格,以及 $T_{i}=T_{0}+i \Delta T$ 现金流量日期 $i$ 标的债 券的票息。我们称之为 $T_{n}-T_{0}$ ,标的债券的寿命超过 $T_{0}$ ,债券的期限。期权的价值由下式 给出
$$
V_{0}=E^{\mathrm{Q}}\left[\frac{1}{B_{T_{0}}}\left(\sum_{i=1}^{n} \Delta T \cdot c \cdot P_{T_{0}}^{T_{i}}+P_{T_{0}}^{T_{n}}-K\right)^{+} \mid \mathcal{F} 0\right] \quad=E^{Q}\left[\left(\sum i=1^{n} \Delta T c \cdot \frac{P_{T_{0}}^{T_{i}}}{B_{T_{0}}}+\frac{P_{T_{0}}^{T_{n}}}{B_{T_{0}}}-\frac{K}{B_{T_{0}}}\right)\right.
$$
在棴里 $\mathbb{Q}$ 是风险中性度量。根据公式 4.25,我们对零息债券的贴现值有以下表达式:
$$
\frac{P T_{0}^{T_{i}}}{B_{T_{0}}}=P_{0}^{T_{i}} \exp \left(\int_{0}^{T_{0}}-\frac{1}{2}\left|\boldsymbol{\Sigma}\left(t, T_{i}\right)\right|^{2} \mathrm{~d} t+\boldsymbol{\Sigma}^{\mathrm{T}}\left(t, T_{i}\right) \mathrm{d} \tilde{\mathbf{W}}{t}\right), $$ 为了 $i=0,1, \ldots, n$. 服用 $i=0$ ,特别是,我们得到货币市场账户倒数的表达式: $$ \frac{1}{B{T_{0}}}=P_{0}^{T_{0}} \exp \left(\int_{0}^{T_{0}}-\frac{1}{2}\left|\boldsymbol{\Sigma}\left(t, T_{0}\right)\right|^{2} \mathrm{~d} t+\boldsymbol{\Sigma}^{\mathrm{T}}\left(t, T_{0}\right) \mathrm{d} \tilde{\mathbf{W}}_{t}\right)
$$

金融代写|利率建模代写Interest Rate Modeling代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

Days
Hours
Minutes
Seconds

hurry up

15% OFF

On All Tickets

Don’t hesitate and buy tickets today – All tickets are at a special price until 15.08.2021. Hope to see you there :)