数学代写|组合学代写Combinatorics代考|CS 519

Doug I. Jones

Doug I. Jones

Lorem ipsum dolor sit amet, cons the all tetur adiscing elit

如果你也在 怎样代写组合学Combinatorics这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

组合学是数学的一个领域,主要涉及计数(作为获得结果的手段和目的)以及有限结构的某些属性。

couryes-lab™ 为您的留学生涯保驾护航 在代写组合学Combinatorics方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写组合学Combinatorics代写方面经验极为丰富,各种代写组合学Combinatorics相关的作业也就用不着说。

我们提供的组合学Combinatorics及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
数学代写|组合学代写Combinatorics代考|CS 519

数学代写|组合学代写Combinatorics代考|Lattice Path Representation for Planar Trees

The construction of the word $w(T)$ of a given tree we gave in Section $3.1$ can be reversed and the tree $T$ can be reconstructed from $w(T)$. Consequently the problem of enumerating planar binary trees may thus be transformed into the problem of counting tree words. However, this leads to a new question:
What words are planar tree words?
We can give this question a beautiful answer by means of a graphical representation of planar trees by lattice paths. We recall that a lattice path is a polygonal path in the $x, y$-plane whose vertices are the lattice points $(i, j)$ with integer coordinates. Given a tree $T$ we construct a lattice path $P(T)$ using the successive letters of $w(T)$ as a guide in the following manner.

We start at the origin and proceed in steps obtained by replacing each letter in $w(T)$ by a vector according to the following rule
$$
x_{i} \rightarrow(1, i-1) .
$$
This is best illustrated by an example. Consider the tree $T$ in Figure 3.19.

It will be good to use the letter $n$ to denote the total number of nodes in a tree. This given, we notice two properties of $P(T)$ neither of which is accidental:
(a) the path ends at the point $(n,-1)$, (heren $=13)$
(b) all but the last edge of $P(T)$ lies “above” thex $-$ axis.
Indeed we have the following remarkable theorem.

数学代写|组合学代写Combinatorics代考|Combinatorial Enumeration of Binary Trees

For a binary tree $T$ the path $P(T)$ has a very simple nature. Indeed, it consists only of edges with slopes 1 or $-1$. For example, when $T$ is as in Figure 3.22,
we have
$$
w(T)=x_{2} x_{2} x_{0} x_{2} x_{2} x_{0} x_{0} x_{0} x_{0}
$$
This gives the path in Figure 3.23.
Note that the word in (3.23) has $I(T)(=4) x_{2}$ ‘s and $E(T)(=5) x_{0}$ ‘s. Let $R\left(x_{0}{ }^{5} x_{2}^{4}\right)$ denote the set of all words which are rearrangements of the 9 letters $x_{0}^{5} x_{2}^{4}$. Clearly, any word $w(T)$ which corresponds to a tree $T$ with 5 external and 4 internal nodes belongs to $R\left(x_{0}^{5} x_{2}^{4}\right) .$ Note that there are all together
$$
\left(\begin{array}{l}
9 \
5
\end{array}\right)
$$
words in $R\left(x_{0}{ }^{5} x_{2}{ }^{4}\right)$. Indeed, to construct any one of them we need only choose the positions of the $x_{0}$ ‘s in the word. Note also that the path corresponding to any one of the words of $R\left(x_{0}{ }^{5} x_{2}{ }^{4}\right)$ will necessarily have property $a$ ) of (3.19). However, only a subset of $R\left(x_{0}^{5} x_{2}^{4}\right)$ will also have property (3.19) (b).

We aim to find out the nature of this subset. For this purpose let us look again at an example. Let us pick at random a word with $4 x_{2}$ ‘s and $5 x_{0}$ ‘s. For instance,
$$
w=x_{2} x_{0} x_{0} x_{2} x_{2} x_{2} x_{0} x_{0} x_{0}
$$
The path corresponding to this word is given in Figure 3.24.
Property (3.19) ( $b$ ) does not hold for this path and we must conclude that $w$ is not a tree word. However, let us extend this path by going back to the beginning of $w$ and replacing letters by vectors as before. The resulting path is, of course, a juxtaposition of two identical copies of the previous path, as indicated in Figure 3.25.

数学代写|组合学代写Combinatorics代考|CS 519

组合学代考

数学代写|组合学代写Combinatorics代考|Lattice Path Representation for Planar Trees

词的构成 $w(T)$ 我们在章节中给出的给定树的 $3.1$ 可以反转和树 $T$ 可以从 $w(T)$. 因此,枚举 平面二叉树的问题可以转化为计算树字的问题。然而,这又引出了一个新问题:
什么词是平面树词?
我们可以通过格子路径对平面树的图形表示来给这个问题一个漂亮的答宴。我们记得格子 路径是多边形路径 $x, y$ – 顶点为格点的平面 $(i, j)$ 具有整数坐标。给定一棵树 $T$ 㧴们构造一 个格子路径 $P(T)$ 使用连续的字母 $w(T)$ 以下列方式作为指导。
我们从原点开始,按照通过替换每个字母获得的步骔进行 $w(T)$ 根据以下规则由向量
$$
x_{i} \rightarrow(1, i-1) .
$$
这最好用一个例子来说明。考虑树 $T$ 在图 $3.19$ 中。
使用这封信会即好 $n$ 表示树中的节点总数。鉴于此,我们注意到两个属性 $P(T)$ 两者都不是 偶然的:
(a) 路径在该点結束 $(n,-1)$, (男性 $=13)$
(b) 除了最后一条边之外的所有边 $P(T)$ 位于”上方” $\mathrm{x}$ 一轴。
事实上,我们有以下非凡的定理。

数学代写|组合学代写Combinatorics代考|Combinatorial Enumeration of Binary Trees

对于二叉树 $T$ 路径 $P(T)$ 有一个非常简单的性质。实际上,它只包含斜率为 1 或 $-1$. 例 如,当 $T$ 如图 $3.22$ 所示,
我们有
$$
w(T)=x_{2} x_{2} x_{0} x_{2} x_{2} x_{0} x_{0} x_{0} x_{0}
$$
这给出了图 $3.23$ 中的路径。
注意 (3.23) 中的词有 $I(T)(=4) x_{2}$ ‘沙 $E(T)(=5) x_{0}$ 的。让 $R\left(x_{0}{ }^{5} x_{2}^{4}\right)$ 表示由 9 个字 母重新排列的所有单词的雔合 $x_{0}^{5} x_{2}^{4}$. 显然,任何词 $w(T)$ 对应于一棵树 $T$ 有 5 个外部节点 和 4 个内部节点属于 $R\left(x_{0}^{5} x_{2}^{4}\right)$. 请注意,所有这些都在一起
(95)
里面的话 $R\left(x_{0}{ }^{5} x_{2}{ }^{4}\right)$. 事实上,要构造其中任何一个,我们只需要选择 $x_{0}$ 是在这个词 中。还要注意,路径对应于任何一个词 $R\left(x_{0}{ }^{5} x_{2}{ }^{4}\right)$ 必然有财产 $\left.a\right)(3.19)$ 。然而,只有一 个子集 $R\left(x_{0}^{5} x_{2}^{4}\right)$ 也将具有属性 (3.19) (b)。
我们的目标是找出这个子集的性质。为此,让我们再看一个例子。让我们随机挑选一个词 $4 x_{2}$ ‘沙 $5 x_{0}$ 的。例如,
$$
w=x_{2} x_{0} x_{0} x_{2} x_{2} x_{2} x_{0} x_{0} x_{0}
$$
该词对应的路径如图 $3.24$ 所示。
财产 (3.19) (b) 不适用于这条路径,我们必须得出结论 $w$ 不是树字。但是,让我们通过回到 开头来扩展这条路径 $w$ 并像以前一样用向量萺换字母。生成的路径当然是前一个路径的两 个相同副本的并列,如图 $3.25$ 所示。

数学代写|组合学代写Combinatorics代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

Days
Hours
Minutes
Seconds

hurry up

15% OFF

On All Tickets

Don’t hesitate and buy tickets today – All tickets are at a special price until 15.08.2021. Hope to see you there :)