# 数学代写|编码理论代写Coding theory代考|MTH 3018

#### Doug I. Jones

Lorem ipsum dolor sit amet, cons the all tetur adiscing elit

couryes-lab™ 为您的留学生涯保驾护航 在代写编码理论Coding theory方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写编码理论Coding theory代写方面经验极为丰富，各种代写编码理论Coding theory相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础
couryes™为您提供可以保分的包课服务

## 数学代写|编码理论代写Coding theory代考|DETERMINING THE DEGREES OF THE IRREDUCIBLE

Since every element of order $n$ has the same number of conjugates with respect to $\mathrm{GF}(q)$, every irreducible factor of the cyclotomic polynomial $Q^{(n)}(x)$ has the same degree over $\mathrm{GF}(q)$. This degree is $m$, which is the multiplicative order of $q \bmod n$. Thus, although the explicit factors of $Q^{(n)}(x)$ may be determined only by polynomial manipulations using Euclid’s algorithm, the degrees of these irreducible factors may be computed by appropriate manipulations with integers.

The most straightforward approach for determining the order of $q \bmod n$ is to compute the successive residues, $q, q^{2}, q^{3}, \ldots, \bmod n$, until one finds the least $m$ such that $q^{m} \equiv 1 \bmod n$. However, if $n$ is large, this procedure becomes tedious. Fortunately, the calculations may be considerably shortened by the use of several simple number theoretic results which we now present.

Theorem 6.51 If $n=\prod_{i} n_{i}{ }{i}, n{i}$ distinct primes, then the order of $q \bmod n$ is the least common multiple of the orders of $q \bmod n_{i}^{j_{i}}$.

EXAMPLE Suppose $n=45, q=2$. Since the order of $2 \bmod 5$ is 4 and the order of $2 \bmod 9$ is 6 , the order of $2 \bmod 45$ is 12 .

Proof of Theorem 6.51 $q^{m} \equiv 1 \bmod n$ iff $q^{m} \equiv 1 \bmod n_{i}^{j^{3}}$ for every i. $\quad q^{m} \equiv 1 \bmod n_{i}^{j_{i}}$ iff $m$ is a multiple of the order of $q \bmod n_{i}^{j_{i}}$.

## 数学代写|编码理论代写Coding theory代考|IS THE NUMBER OF IRREDUCIBLE

Although it appears unlikely that any general method for factoring polynomials over finite fields can improve substantially on the algorithm presented in Sec. 6.1, other methods sometimes enable one to obtain certain information about the factors with even less effort. For example, every high-school algebra student knows that the roots of the real quadratic equation $a x^{2}+b x+c=0$ are $x=\left(-b \pm \sqrt{b^{2}-4 a c}\right) / 2 a$. If $q$ is a power of an odd prime which does not divide $a$, then this formula remains valid over $\operatorname{GF}(q)$. Thus, the question of whether or not a quadratic equation over $\mathrm{GF}(q)$ has two roots in $\mathrm{GF}(q)$ depends on whether or not its discriminant, $D=b^{2}-4 a c$, is a perfect square in $\mathrm{GF}(q)$. In particular, we see that the original quadratic equation has an even number (two) of irreducible factors over $G F(q)$ if its discriminant is a square, but it has an odd number (one) of irreducible factors over $\mathrm{GF}(q)$ if its discriminant is a nonsquare. This is the simplest example of a general result called Stickelberger’s theorem. In order to state the general result, we must define the discriminant of a polynomial of arbitrary degree.

Stickelberger’s theorem $\mathbf{6 . 6 8}$ (odd characteristic) Let $q$ be a power of an odd prime, let $f(x)$ be a monic polynomial of degree $m$ over GF $(q)$, with discriminant $D(f) \neq 0$. Let $r$ be the number of irreducible factors of $f(x)$ over $\mathrm{GF}(q)$. Then $r \equiv m \bmod 2$ iff $D(f)$ is a square in $\mathrm{GF}(q)$

Given an integer $a$ and a prime $p$, the Legendre symbol $(a / p)$ is defined by Definition 6.71.
Definition $6.71$
$$(a / p)= \begin{cases}1 & \text { if } x^{2}=a \text { has nonzero solutions in } \mathrm{GF}(p) \ -1 & \text { if } x^{2}=a \text { does not have solutions in } \mathrm{GF}(p) \ 0 & \text { if } p \text { divides } a\end{cases}$$
The Legendre symbol arises in applications of Stickelberger’s theorem, in the determination of the multiplicative order of $a \bmod p$, in the determination of the degrees of the irreducible factors of $Q^{(a)}(x)$ over $\mathrm{GF}(p)$, in the study of quadratic-residue codes, which will be defined in Sec. $15.2$, and in many other places in number theory. If the equation $x^{2}=a$ has nonzero solutions in $\mathrm{GF}(p), a$ is said to be a quadratic residue $\bmod p$; if the equation $x^{2}=a$ has no solution in $\mathrm{GF}(p), a$ is said to be a quadratic nonresidue.

If $a$ is a quadratic nonresidue, then $x^{2}-a$ is irreducible over $\mathrm{GF}(p)$, and $\sqrt{a} \in \mathrm{GF}\left(p^{2}\right)$; if $a$ is a quadratic residue, then $x^{2}-a$ factors over $\mathrm{GF}(p)$, and $\sqrt{a} \in \mathrm{GF}(p)$. In either case, $\sqrt{a} \in \mathrm{GF}\left(p^{2}\right)$. The element $\sqrt{a}$ is in the subfield $\mathrm{GF}(p)$ iff $\sqrt{a^{p}}=\sqrt{a}$. Since $\left(a^{(p-1) / 2}\right)^{2}=1$ and the only two roots of the equation $x^{2}-1=0$ are $x=\pm 1, a^{(p-1) / 2}=$ $\pm 1 \bmod p$. Therefore,
$$(a / p) \equiv a^{(p-1) / 2} \bmod p$$ This congruence is called Euler’s criterion. Lemmas $6.721$ to $6.723$ follow immediately,

## 数学代写|编码理论代写Coding theory代考|IS THE NUMBER OF IRREDUCIBLE

$x=\left(-b \pm \sqrt{b^{2}-4 a c}\right) / 2 a$. 如果 $q$ 是不除的奇榡数的草 $a$,那么这个公式在 $\mathrm{GF}(q)$. 因 此，一个二次方程是否超过 $\mathrm{GF}(q)$ 有两个根源 $\mathrm{GF}(q)$ 取决于它的判别式是否，
$D=b^{2}-4 a c$ ，是一个完美的正方形 $\mathrm{GF}(q)$. 特别是，我们看到原始二次方程有偶数（两 个) 不可约因子 $G F(q)$ 如果它的判别式是一个正方形，但它有奇数个 (一个) 不可约因数 $\mathrm{GF}(q)$ 如果它的判别式是非正方形的。这是称为斯蒂克尔伯格定理的一般结果的最简单示 例。为了说明一般结果，我们必须定义任意次数多项式的判别式。

$(a / p)=\left{1 \quad\right.$ if $x^{2}=a$ has nonzero solutions in $\mathrm{GF}(p)-1 \quad$ if $x^{2}=a$ does not have solutions in $\mathrm{GF}(p) 0$
Legendre 符号出现在 Stickelberger 定理的应用中，用于确定 $a \bmod p$, 在确定不可约因子

$\sqrt{a}$ 在子字段中 $\mathrm{GF}(p)$ 当且当 $\sqrt{a^{p}}=\sqrt{a}$. 自从 $\left(a^{(p-1) / 2}\right)^{2}=1$ 和方程仅有的两个根
$x^{2}-1=0$ 是 $x=\pm 1, a^{(p-1) / 2}=\pm 1 \bmod p$. 所以，
$$(a / p) \equiv a^{(p-1) / 2} \bmod p$$

## 有限元方法代写

tatistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

Days
Hours
Minutes
Seconds

# 15% OFF

## On All Tickets

Don’t hesitate and buy tickets today – All tickets are at a special price until 15.08.2021. Hope to see you there :)