数学代写|编码理论代写Coding theory代考|ELEC5507

Doug I. Jones

Lorem ipsum dolor sit amet, cons the all tetur adiscing elit

couryes-lab™ 为您的留学生涯保驾护航 在代写编码理论Coding theory方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写编码理论Coding theory代写方面经验极为丰富，各种代写编码理论Coding theory相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础
couryes™为您提供可以保分的包课服务

数学代写|编码理论代写Coding theory代考|A GENERAL ALGORITHM

We present here an algorithm for factoring a given polynomial, $f(x)=$ $\sum_{k=0}^{m} f_{k} x^{k}, f_{k} \in \mathrm{GF}(q)$, into powers of irreducible polynomials. If $q$ is small, this algorithm proves effective even if $m$ is quite large.

1. We construct the $m \times m$ matrix $Q$ over $\mathrm{GF}(q)$, whose $i$ th row represents $x^{q(i-1)}$ reduced modulo $f(x)$. Specifically,
$$x^{q i} \equiv \sum_{k=0}^{m-1} Q_{i+1, k+1} x^{k} \bmod f(x)$$
The $Q$ matrix may be computed with a shift register wired to multiply by $x \bmod f(x)$. The register is started at 1 , which is the first row of $Q$. After $q$ shifts, it contains the second row of $Q, \ldots$, etc. After $q(m-1)$ shifts, it contains the last row of $Q$.

Given any polynomial $g(x)$ of degree $<m$ over GF $(q), g(x)=$ $\sum_{i=0}^{m-1} g_{i} x^{i}$, we may compute the residue of $[g(x)]^{\alpha} \bmod f(x)$ by multi-plying the row vector $\left[g_{0}, g_{1}, \ldots, g_{m-1}\right]$ by the $Q$ matrix. This follows from the observation that
\begin{aligned} {[g(x)]^{q}=g\left(x^{q}\right)=\sum_{i=0}^{m-1} g_{i} x^{q i} \equiv \sum_{i=0}^{m-1}\left(\sum_{k=0}^{m-1} g_{i} \Theta_{i+1, k+1} x^{k}\right) } \ &=\sum_{k=0}^{m-1}\left(\sum_{i=0}^{m-1} g_{i} \Theta_{i+1, k+1}\right) x^{k} \end{aligned}
Similarly, we could compute $[g(x)]^{\alpha}-g(x) \bmod f(x)$ by multiplying the row vector $\left[g_{0}, g_{1}, \ldots, g_{m-1}\right]$ by the matrix $Q-g$, where $g$ is the $m \times m$ identity matrix over GF $(q)$.

1. We find a set of row vectors which span the null space of $Q-g$. This may be done by appropriate column operations on the matrix $Q-g$, as described in Secs. $2.5$ and 2.6. Each such row vector in the null space of $Q-g$ represents a polynomial $g(x)$ which satisfies the equation $[g(x)]^{a}-g(x) \equiv 0 \bmod f(x)$, and, conversely, each $g(x)$ which satisfies this equation is represented by a row vector in the null space of $Q-g$.
2. We select any of the polynomials $g(x)$ found in step 2 and apply Euclid’s algorithm to determine the greatest common divisor of $f(x)$ and $g(x)-s$ for each $s \in \mathrm{GF}(q) . \dagger \quad$ We then have the factorization of Theorem 6.11.

数学代写|编码理论代写Coding theory代考|DETERMINING THE PERIOD OF A POLYNOMIAL

Given a polynomial $f(x)$, we are often interested in determining its period, i.e., the smallest $j$ for which $f(x)$ divides $x^{j}-1$. If $f(x)$ is an irreducible polynomial of degree $m$ over GF $(q)$, then the period of $f(x)$ is equal to the multiplicative order of its roots, which is a factor of $q^{m}-1$.

How is the period of a factorable polynomial related to the periods of its irreducible factors? Let us first suppose that $f(x)$ is an irreducible polynomial of period $n$ and try to find the period of a power of $f(x)$, $[f(x)]^{m}$. Since $n$ is a factor of $q^{\text {deg } f}-1$, it is a nonmultiple of $p$, the characteristic of $\operatorname{GF}(q)$. Since the period of $f(x)$ is $n, f(x)$ divides $x^{k}-1$ iff $k$ is a multiple of $n$. If $k=p^{i} j$, where $j$ is a nonmultiple of $p$, then $x^{k}-1=\left(x^{j}-1\right)^{p^{i}}$. The polynomial $x^{j}-1$ has no repeated roots, because it divides $x^{q^{m-1}}-1$ for that $m$ which is the multiplicative order of the integer $q$ mod $j$. Thus, every irreducible factor of $x^{k}-1$ has multiplicity $p^{i}$. We conclude that if the irreducible polynomial $f(x)$ has period $n$, then the period of $[f(x)]^{m}$ is $n$ times the least power of $p \geq m$.

Next suppose that $f(x)$ is the product of several irreducible factors $f^{(1)}(x), f^{(2)}(x), \ldots$ which have multiplicities $m_{1}, m_{2}, \ldots$ Since $x^{k}-1$ divides $x^{N}-1$ iff $k$ divides $N$, we conclude that the period of $f(x)$ is the least common multiple of the periods of $\left[f^{(1)}(x)\right]^{m_{1}},\left[f^{(2)}(x)\right]^{m_{2}}, \ldots . .$ This, in turn, is the laast common multiple of the periods of the $f^{(i)}(x)$ times the least power of $p$ which is greater than or equal to all the $m_{i}$.

数学代写|编码理论代写Coding theory代考|TRINOMIALS OVER

The methods of Secs. $6.1$ and $6.2$ may be easily programmed. Using a modern computer, it is quite feasible to factor any binary polynomial of degree up to 1,000 .
† Using special techniques introduced by Lucas (1878), it is relatively easy for moderate values of $m$ to determine whether or not the number $2^{m}-1$ is prime. If $m$ is prime, this number is called a Mersenne number; if $2^{m}-1$ is prime, it is called a Mersenne prime. Unfortunately, the Lucas procedure often shows that a Mersenne number is composite without giving any information about the factors. In other čases, however, the proceduré has ennabléd Gillies (1064) to prove that cêrtain enormous numbers, including $2^{11,213}-1$, are prime.

Among the most interesting binary polynomials are the trinomials, $x^{n}+x^{k}+1$. If $\alpha$ is a root in $\mathrm{GF}\left(2^{n}\right)$ of an irreducible binary trinomial of degree $n$, then the first $n$ powers of $\alpha$ provide a particularly attractive basis for representing $\mathrm{GF}\left(2^{n}\right)$, since it is then possible to multiply by $\alpha$ using an $n$-bit feedback shift register whose connections require only one two-input adder (see Sec. 2.41). In coding theory, most practical interest centers on fields of order $2^{12}$ or smaller. From this viewpoint, the interest in $\mathrm{GF}\left(2^{n}\right)$ for $n>12$ is largely academic. However, there are certain other applications of feedback shift registers, such as the generation of sequences of pseudorandom bits, where there is practical interest in finding primitive binary trinomials of as large degree as possible.

数学代写|编码理论代写Coding theory代考|A GENERAL ALGORITHM

1. 我们构建 $m \times m$ 矩阵 $Q$ 超过 $\mathrm{GF}(q)$ ，谁的 $i$ 第行代表 $x^{q(i-1)}$ 减少模 $f(x)$. 具体来 说，
$$x^{q i} \equiv \sum_{k=0}^{m-1} Q_{i+1, k+1} x^{k} \bmod f(x)$$
这 $Q$ 矩阵可以用连接到乘以的移位寄存器计算 $x \bmod f(x)$. 寄存器从 1 开始，即 第一行 $Q$. 后 $q$ 班次，它包含第二行 $Q, \ldots$ 等之后 $q(m-1)$ 班次，它包含最后一行 $Q .$
给定任何多项式 $g(x)$ 学位 $<m$ 过GF $(q), g(x)=\sum_{i=0}^{m-1} g_{i} x^{i}$ ，我们可以计算 $[g(x)]^{\alpha} \bmod f(x)$ 通过乘以行向量 $\left[g_{0}, g_{1}, \ldots, g_{m-1}\right]$ 由 $Q$ 矩阵。这是从以下观崇得出 的:
$$[g(x)]^{q}=g\left(x^{q}\right)=\sum_{i=0}^{m-1} g_{i} x^{q i} \equiv \sum_{i=0}^{m-1}\left(\sum_{k=0}^{m-1} g_{i} \Theta_{i+1, k+1} x^{k}\right)=\sum_{k=0}^{m-1}\left(\sum_{i=0}^{m-1} g_{i} \Theta_{i+1, k+1}\right) x^{k}$$
同样，我们可以计算 $[g(x)]^{\alpha}-g(x) \bmod f(x)$ 通过乘以行向量 $\left[g_{0}, g_{1}, \ldots, g_{m-1}\right]$ 由矩 阵 $Q-g$ ，在哪里 $g$ 是个 $m \times m \mathrm{GF}$ 上的单位矩阵 $(q)$.
2. 我们找到一组跨越雾空间的行向量 $Q-g$. 这可以通过对矩阵进行适当的列操作来完 成 $Q-g$ ，如 Secs 中所述。 $2.5$ 和 2.6。霎空间中的每个这样的行向量 $Q-g$ 表示 多项式 $g(x)$ 满足方程 $[g(x)]^{a}-g(x) \equiv 0 \bmod f(x)$ ，并且相反，每个 $g(x)$ 满足 这个方程的由零空间中的行向量表示 $Q-g$.
3. 我们选择任何多项式 $g(x)$ 在步骤 2 中找到并应用欧几里得算法来确定最大公约数 $f(x)$ 和 $g(x)-s$ 对于每个 $s \in \mathrm{GF}(q)$. $\dagger$ 然后我们得到定理 $6.11$ 的因式分解。

数学代写|编码理论代写Coding theory代考|TRINOMIALS OVER

†使用 Lucas (1878) 弓入的特殊技术，对于中等值相对容易 $m$ 判断昊码是否 $2^{m}-1$ 是溸 数。如果 $m$ 是牡数，这个数称为梅森数；如果 $2^{m}-1 \mathrm{~ 是 㲅 数 ， 称 为 梅 森 拝}$ 卢卡斯过程经常表明梅棌数是合数，而没有提供任何有关因子的信息。然而，在其他情况 下，程序使 Gillies (1064) 能够证明某些巨大的数字，包括 $2^{11,213}-1$ ，是嗉数。

有限元方法代写

tatistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

Days
Hours
Minutes
Seconds

15% OFF

On All Tickets

Don’t hesitate and buy tickets today – All tickets are at a special price until 15.08.2021. Hope to see you there :)