# 数学代写|数论作业代写number theory代考|MATH2088

#### Doug I. Jones

Lorem ipsum dolor sit amet, cons the all tetur adiscing elit

couryes-lab™ 为您的留学生涯保驾护航 在代写数论number theory方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写数论number theory代写方面经验极为丰富，各种代写数论number theory相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础
couryes™为您提供可以保分的包课服务

## 数学代写|数论作业代写number theory代考|Prime Factorization

Fermat’s Little Theorem $2.17$ can be used to show that a given number $q>1$ is composite without knowing any non-trivial divisor. If we find some $a$ coprime to $q$ such that congruence (2.35) does not hold, then $q$ is not a prime number. For example, if we show that $q$ does not divide $2^{q-1}-1$ for $q$ odd, then $q$ is composite.

It should be emphasized that the factorization of a given number $n$ to prime factors is much more difficult than finding whether $n$ is a prime or composite number. According to Gauss, finding the prime number factorization of a given number is a very important and fundamental role of arithmetic [118, Article 329].

The oldest method to factor the number $n$ into prime factors gradually tries to divide $n$ by all primes not exceeding $\sqrt{n}$. For instance, to show that 283 is a prime it is enough to verify that it is not divisible by $2,3,5,7,11$, and 13 . However, it must be emphasized that this method is not very effective. Suppose, for instance, we are able to perform one billion divisions per second. Then a factorization of $n=p q$, where $p$ and $q$ are unknown thirty digits primes, would take more time than the age of the universe $\left(\approx 13.7 \cdot 10^{9}\right.$ years).

To explore this assertion further, let us denote by $\pi(x)$ the number of primes not exceeding $x$ (see Fig. 2.7). Note that Carl Friedrich Gauss when he was a teenager conjectured that the probability that $n$ is a prime number is $1 / \log n$. By $[138,350]$ the value of $\pi(x)$ is approximately equal to $\frac{x}{\log x}$, where the error is less than $15 \%$ for every $x \geq 3000$. In 1896 Jacques Hadamard (1865-1963) and independently also Charles-Jean de la Vallée Poussin (1866-1962) even proved this asymptotic equality for $x \rightarrow \infty$,
$$\left.\pi(x) \approx \frac{x}{\log x} \quad \text { (Prime Number Theorem }\right)$$ Since the integer part of $\sqrt{n}$ has 30 digits, there exist at least $10^{29} /(29 \log 10)$ $\approx 1.5 \cdot 10^{27}$ prime numbers less than $\sqrt{n}$. Because each year has about $3.2 \cdot 10^{7} \mathrm{~s}$, we will perform $3.2 \cdot 10^{16}$ divisions during this time period. But to test all primes not exceeding $\sqrt{n}$, we would need at least $47 \cdot 10^{9}$ years to factor $n$ which is more than three times the age of the universe. Mathematicians compare such an algorithm to an effort to smash an atom by a hammer. By having any additional information about the number to be factored or about its prime factors, the factorization can be done much more efficiently (see e.g. Theorems $4.5$ and 4.17).

## 数学代写|数论作业代写number theory代考|Criteria for Primality

Let $j, m, n$ be positive integers. We say that $m^{j}$ exactly divides $n$ and write $m^{j} | n$, if $m^{j} \mid n$, but $m^{j+1} \nmid n$. For $j=0$ the symbol $m^{0} | n$ means that $m \nmid n$.

Theorem $3.1$ A positive integer $n$ is a prime if and only if $n \mid\left(\begin{array}{l}n \ k\end{array}\right)$ for all $k \in$ ${1, \ldots, n-1}$

Proof $\Rightarrow:$ For $k \in{1, \ldots, n-1}$ the number $n-k$ is also between 1 and $n-1$.
Since $n$ is prime, $n \nmid k !$ and $n \nmid(n-k)$ !. Hence, we have
$$n \mid\left(\begin{array}{l} n \ k \end{array}\right)=\frac{n !}{k !(n-k) !},$$
since $n \mid n !$
$\Leftarrow$ : Conversely, let $n$ be composite and let $p$ be the smallest prime which divides
$n$. Hence, $1<p<n$ and
$$\left(\begin{array}{l} n \ p \end{array}\right)=\frac{n(n-1) \cdots(n-p+1)}{p(p-1) \cdots 2 \cdot 1} .$$
Assume that $p^{j} | n$ for some positive integer $j$. Between $p$ successive numbers $n, n-1, \ldots, n-p+1$ there exists exactly one divisible by $p$. Since $p \mid n$, we obtain
$$p \nmid(n-1)(n-2) \cdots(n-p+1) .$$
Therefore, $p^{j} | n(n=1) \cdots(n=p \neq 1)$ and clearly $p | p(p=1) \cdots 2,1$. Thus by (3.1) we get $p^{j-1} |\left(\begin{array}{l}n \ p\end{array}\right)$. However, $n \nmid\left(\begin{array}{l}n \ p\end{array}\right)$, since $p^{j} | n$.

# 数论作业代写

## 数学代写|数论作业代写number theory代考|Prime Factorization

$$\pi(x) \approx \frac{x}{\log x} \quad \text { (Prime Number Theorem) }$$

## 数学代写|数论作业代写number theory代考|Criteria for Primality

$$n \mid(n k)=\frac{n !}{k !(n-k) !},$$

$n$. 因此， $1<p<n$ 和
$$(n p)=\frac{n(n-1) \cdots(n-p+1)}{p(p-1) \cdots 2 \cdot 1}$$

$$p \nmid(n-1)(n-2) \cdots(n-p+1) .$$

## 有限元方法代写

tatistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

Days
Hours
Minutes
Seconds

# 15% OFF

## On All Tickets

Don’t hesitate and buy tickets today – All tickets are at a special price until 15.08.2021. Hope to see you there :)