数学代写|数学分析代写Mathematical Analysis代考|MATH 307

Doug I. Jones

Lorem ipsum dolor sit amet, cons the all tetur adiscing elit

couryes-lab™ 为您的留学生涯保驾护航 在代写数学分析Mathematical Analysis方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写数学分析Mathematical Analysis代写方面经验极为丰富，各种代写数学分析Mathematical Analysis相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础
couryes™为您提供可以保分的包课服务

数学代写|数学分析代写Mathematical Analysis代考|Influence Function Depending on One Variable Only

In this section we would like to discuss System (1) of the following specific form:
\begin{aligned} &\dot{x_{1}}=f_{1}\left(x_{1}\right)+c_{1} g_{1}\left(x_{2}\right), \ &\dot{x_{2}}=f_{2}\left(x_{2}\right)+c_{2} g_{2}\left(x_{1}\right) \end{aligned}

which is related to the modeling of dyadic interactions. Modeling dyadic interactions using ODEs started with a short note by Strogatz [8] who noticed that fluctuations of emotions in the relationship of Romeo and Juliet could be described using a simple linear mathematical oscillator. However, it is obvious that humans’ emotions are non-linear, and this was a reason to propose a model of the form (4) by Rinaldi and his coauthors; cf. [6] for details and the history of this model. Similar approach but in a little different context was used by Liebovitch et al. [2]. They used the notion of actors instead of partners to mark that they do not describe love relationships. Here we focus on the interpretation presented in our paper [5], which is similar to those by Liebovitch et al.

In System (4), the inner dynamics is described by linear functions $f_{i}(\zeta)=a_{i}-$ $b_{i} \zeta$. In our interpretation (cf. [5]) coefficients $a_{i}$ of the inner dynamics correspond to the natural optimism/pessimism of the $i$ th actor. More precisely, when $a_{i}>0$, then the $i$ th actor is an optimist with the natural level of optimism equal to $\frac{a_{i}}{b_{i}}$ which is called uninfluenced steady state, while for $a_{i}<0$ this steady state reflects the natural level of pessimism for the $i$ th actor. The coefficient $b_{i}>0$ is called a forgetting coefficient in this context.

Both functions $g_{i}$ are the same, that is $g_{1}(\zeta)=g_{2}(\zeta)=g(\zeta)$ and $g$ have the following properties:
(a) $g(0)=0$;
(b) $g^{\prime}(0)=1$;
(c) $g$ is increasing;
(d) $\zeta g^{\prime \prime}(\zeta)<0$ for $\zeta \neq 0$.

数学代写|数学分析代写Mathematical Analysis代考|Influence Function of the Form xig

In this section we consider the model proposed in the context of perceptual decision making in [1]. In that paper we focused on modeling the most basic perceptual decision-making in neuronal networks in which the network needs to disambiguate between two sensory stimuli. We described changes in firing rates $x_{1}, x_{2}$ of two neuronal populations. In the simplest version without time delay this model reads
\begin{aligned} &\dot{x}{1}=\alpha{1}\left(a_{1}-b_{1} x_{1}+c x_{2} g\left(x_{1} x_{2}\right)\right), \ &\dot{x}{2}=\alpha{2}\left(a_{2}-b_{2} x_{2}+c x_{1} g\left(x_{1} x_{2}\right)\right), \end{aligned}
where $\frac{1}{\alpha_{i}}$ are time scales for these neuronal populations, the $i$ th population receives an external input $a_{i}$, our populations are self-inhibited with inhibition coefficients $b_{i}$, $c$ is a coefficient describing the maximal capacity of a synapse, while $g$ characterizes interactions between neuronal populations related to so-called synaptic plasticity for which we assumed a sigmoid shape. In this model we are interested in positive values of the variables $x_{i}$ and this is the reason we define the function $g$ only for non-negative values. However, in general the model could be extended for all real values of $x_{i}$ and then the function $g$ should be considered as a function on $\mathbb{R}$.

We assume that $g: \mathbb{R}{+} \rightarrow \mathbb{R}{+}$of class $\mathbf{C}^{1}$ satisfies the following assumptions:
$-g(0)=0$
$-g^{\prime}(\zeta)>0$ for $\zeta>0$

• there exists $\zeta_{1}>0$ such that in $\left(0, \zeta_{1}\right)$ the function $g$ is convex and for $\zeta>\zeta_{1}$ it is concave;
$-g$ is bounded.

数学代写|数学分析代写Mathematical Analysis代考|Influence Function Depending on One Variable Only

$$\dot{x_{1}}=f_{1}\left(x_{1}\right)+c_{1} g_{1}\left(x_{2}\right), \quad \dot{x_{2}}=f_{2}\left(x_{2}\right)+c_{2} g_{2}\left(x_{1}\right)$$

$a_{i}<0$ 这种稳定状态反映了自然的悲观情绪水平 $i$ 演员。系数 $b_{i}>0$ 在这种情况下称为遗 忘系数。

(a) $g(0)=0$
$\left(\right.$ 二) $g^{\prime}(0)=1$
(C) $g$ 在垾加;
(d) $\zeta g^{\prime \prime}(\zeta)<0$ 为了 $\zeta \neq 0$.

数学代写|数学分析代写Mathematical Analysis代考|Influence Function of the Form xig

$$\dot{x} 1=\alpha 1\left(a_{1}-b_{1} x_{1}+c x_{2} g\left(x_{1} x_{2}\right)\right), \quad \dot{x} 2=\alpha 2\left(a_{2}-b_{2} x_{2}+c x_{1} g\left(x_{1} x_{2}\right)\right),$$

$-g(0)=0$
$-g^{\prime}(\zeta)>0$ 为了 $\zeta>0$

• 那里存在 $\zeta_{1}>0$ 这样在 $\left(0, \zeta_{1}\right)$ 功能 $g$ 是凸的并且对于 $\zeta>\zeta_{1}$ 它是凹的：
$-g$ 是有界的。

有限元方法代写

tatistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

Days
Hours
Minutes
Seconds

15% OFF

On All Tickets

Don’t hesitate and buy tickets today – All tickets are at a special price until 15.08.2021. Hope to see you there :)