# 数学代写|凸优化作业代写Convex Optimization代考|ESE 605

#### Doug I. Jones

Lorem ipsum dolor sit amet, cons the all tetur adiscing elit

couryes-lab™ 为您的留学生涯保驾护航 在代写凸优化Convex Optimization方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写凸优化Convex Optimization代写方面经验极为丰富，各种代写凸优化Convex Optimization相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础
couryes™为您提供可以保分的包课服务

## 数学代写|凸优化作业代写Convex Optimization代考|Hyperplanes and halfspaces

A hyperplane is an affine set (hence a convex set) and is of the form
$$H=\left{\mathbf{x} \mid \mathbf{a}^{T} \mathbf{x}=b\right} \subset \mathbb{R}^{n}$$
where $\mathbf{a} \in \mathbb{R}^{n} \backslash\left{\mathbf{0}_{n}\right}$ is a normal vector of the hyperplane, and $b \in \mathbb{R}$. Analytically it is the solution set of a linear equation of the components of $\mathbf{x}$. In geometrical sense, a hyperplane can be interpreted as the set of points having a constant inner product (b) with the normal vector (a). Since affdim $(H)=n-1$,the hyperplane $(2.30)$ can also be expressed as
$$H=\operatorname{aff}\left{\mathbf{s}{1}, \ldots, \mathbf{s}{n}\right} \subset \mathbb{R}^{n},$$
where $\left{\mathbf{s}{1}, \ldots, \mathbf{s}{n}\right} \subset H$ is any affinely independent set. Then it can be seen that
implying that the normal vector a can be determined from $\left{\mathbf{s}{1}, \ldots, \mathbf{s}{n}\right}$ up to a scale factor.

The hyperplane $H$ defined in (2.30) divides $\mathbb{R}^{n}$ into two closed halfspaces as follows:
\begin{aligned} &H_{-}=\left{\mathbf{x} \mid \mathbf{a}^{T} \mathbf{x} \leq b\right} \ &H_{+}=\left{\mathbf{x} \mid \mathbf{a}^{T} \mathbf{x} \geq b\right} \end{aligned}
and so each of them is the solution set of one (non-trivial) linear inequality. Note that $\mathbf{a}=\nabla\left(\mathbf{a}^{T} \mathbf{x}\right)$ denotes the maximally increasing direction of the linear function $\mathbf{a}^{T} \mathbf{x}$. The above representations for both $H_{-}$and $H_{+}$for a given $\mathbf{a} \neq \mathbf{0}$, are not unique, while they are unique if a is normalized such that $|\mathbf{a}|_{2}=1$. Moreover, $H_{-} \cap H_{+}=H$.
An open halfspace is a set of the form
$$H_{–}=\left{\mathbf{x} \mid \mathbf{a}^{T} \mathbf{x}b\right}$$
where $\mathbf{a} \in \mathbb{R}^{n}, \mathbf{a} \neq \mathbf{0}$, and $b \in \mathbb{R}$.

## 数学代写|凸优化作业代写Convex Optimization代考|Euclidean balls and ellipsoids

A Euclidean ball (or, simply, ball) in $\mathbb{R}^{n}$ has the following form:
$$B\left(\mathbf{x}{c}, r\right)=\left{\mathbf{x} \mid\left|\mathbf{x}-\mathbf{x}{c}\right|_{2} \leq r\right}=\left{\mathbf{x} \mid\left(\mathbf{x}-\mathbf{x}{c}\right)^{T}\left(\mathbf{x}-\mathbf{x}{c}\right) \leq r^{2}\right},$$
where $r>0$. The vector $\mathbf{x}{c}$ is the center of the ball and the positive scalar $r$ is its radius (see Figure 2.7). The Euclidean ball is also a 2-norm ball, and, for simplicity, a ball without explicitly mentioning the associated norm, means the Euclidean ball hereafter. Another common representation for the Euclidean ball is $$B\left(\mathbf{x}{c}, r\right)=\left{\mathbf{x}{c}+r \mathbf{u} \mid|\mathbf{u}|{2} \leq 1\right} .$$
It can be easily proved that the Euclidean ball is a convex set.
Proof of convexity: Let $\mathbf{x}{1}$ and $\mathbf{x}{2} \in B\left(\mathbf{x}{c}, r\right)$, i.e., $\left|\mathbf{x}{1}-\mathbf{x}{c}\right|{2} \leq r$ and $| \mathbf{x}{2}-$ $\mathbf{x}{c} |_{2} \leq r$. Then,
\begin{aligned} \left|\theta \mathbf{x}{1}+(1-\theta) \mathbf{x}{2}-\mathbf{x}{c}\right|{2} &=\left|\theta \mathbf{x}{1}+(1-\theta) \mathbf{x}{2}-\left[\theta \mathbf{x}{c}+(1-\theta) \mathbf{x}{c}\right]\right|_{2} \ &=\left|\theta\left(\mathbf{x}{1}-\mathbf{x}{c}\right)+(1-\theta)\left(\mathbf{x}{2}-\mathbf{x}{c}\right)\right|_{2} \ & \leq\left|\theta\left(\mathbf{x}{1}-\mathbf{x}{c}\right)\right|_{2}+\left|(1-\theta)\left(\mathbf{x}{2}-\mathbf{x}{c}\right)\right|_{2} \ & \leq \theta r+(1-\theta) r \ &=r, \text { for all } 0 \leq \theta \leq 1 \end{aligned}
Hence, $\theta \mathbf{x}{1}+(1-\theta) \mathbf{x}{2} \in B\left(\mathbf{x}{c}, r\right)$ for all $\theta \in[0,1]$, and thus we have proven that $B\left(\mathbf{x}{c}, r\right)$ is convex.

## 数学代写|凸优化作业代写Convex Optimization代考| Hyperplanes and halfspaces

H= Veft $\backslash$ Imathbf ${x} \backslash$ mid $\backslash$ mathbff ${a} \wedge T T} \backslash$ mathbf ${x}=b \backslash r i g h t} \backslash$ subset $\backslash$ mathbb ${R} \wedge{n}$ 量，并且 $b \in \mathbb{R}$. 解折上，它是 $\mathbf{x}$.在几何意义上，超平面可以解释为具有恒定内积 (b) 和 法向量 (a) 的点的集合。自 $\operatorname{affdim}(H)=n-1$ ，超平面 $(2.30)$ 也可以表示为

$\mathbf{a}=\nabla\left(\mathbf{a}^{T} \mathbf{x}\right)$ 表示线性函数的最大递㘿方向 $\mathbf{a}^{T} \mathbf{x}$.上述表示两者 $H_{-}$和 $H_{+}$对于给定的
$\mathbf{a} \neq \mathbf{0}$ ，则不唯一，但如果 $a$ 被规范化，则它们是唯一的 $|\mathbf{a}|{2}=1$. 此外 $H{-} \cap H_{+}=H$.

## 有限元方法代写

tatistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

Days
Hours
Minutes
Seconds

# 15% OFF

## On All Tickets

Don’t hesitate and buy tickets today – All tickets are at a special price until 15.08.2021. Hope to see you there :)